skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The melting point of lithium: an orbital-free first-principles molecular dynamics study

Abstract

The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453 K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.

Authors:
 [1];  [2];  [3];  [1];  [4]
  1. Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering
  2. Ecole Polytechnique Federale Lausanne, Palaiseau (France). Lab. of Irradiated Solids
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
  4. Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering, Andlinger Center for Energy and the Environment, Program in Applied and Computational Mathematics
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
1390521
Grant/Contract Number:  
SC0008598
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Physics
Additional Journal Information:
Journal Volume: 111; Journal Issue: 22-23; Journal ID: ISSN 0026-8976
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; orbital-free density functional theory; molecular dynamics; melting temperature; liquid lithium; superheating effect

Citation Formats

Chen, Mohan, Hung, Linda, Huang, Chen, Xia, Junchao, and Carter, Emily A. The melting point of lithium: an orbital-free first-principles molecular dynamics study. United States: N. p., 2013. Web. doi:10.1080/00268976.2013.828379.
Chen, Mohan, Hung, Linda, Huang, Chen, Xia, Junchao, & Carter, Emily A. The melting point of lithium: an orbital-free first-principles molecular dynamics study. United States. doi:10.1080/00268976.2013.828379.
Chen, Mohan, Hung, Linda, Huang, Chen, Xia, Junchao, and Carter, Emily A. Sun . "The melting point of lithium: an orbital-free first-principles molecular dynamics study". United States. doi:10.1080/00268976.2013.828379. https://www.osti.gov/servlets/purl/1390521.
@article{osti_1390521,
title = {The melting point of lithium: an orbital-free first-principles molecular dynamics study},
author = {Chen, Mohan and Hung, Linda and Huang, Chen and Xia, Junchao and Carter, Emily A.},
abstractNote = {The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453 K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.},
doi = {10.1080/00268976.2013.828379},
journal = {Molecular Physics},
number = 22-23,
volume = 111,
place = {United States},
year = {2013},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transferable local pseudopotentials for magnesium, aluminum and silicon
journal, January 2008

  • Huang, Chen; Carter, Emily A.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 47
  • DOI: 10.1039/b810407g

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

First-principles simulations of direct coexistence of solid and liquid aluminum
journal, August 2003


Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment
journal, March 2004


Projector augmented-wave method
journal, December 1994


Ab Initio Molecular Dynamics Study of First-Order Phase Transitions: Melting of Silicon
journal, March 1995


Zur Theorie der Kernmassen
journal, July 1935

  • Weizs�cker, C. F. v.
  • Zeitschrift f�r Physik, Vol. 96, Issue 7-8
  • DOI: 10.1007/BF01337700

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Electronic and structural transitions in dense liquid sodium
journal, September 2007

  • Raty, Jean-Yves; Schwegler, Eric; Bonev, Stanimir A.
  • Nature, Vol. 449, Issue 7161
  • DOI: 10.1038/nature06123

Ab initio melting curve of the fcc phase of aluminum
journal, May 2002


The Compressibility of Media under Extreme Pressures
journal, September 1944

  • Murnaghan, F. D.
  • Proceedings of the National Academy of Sciences, Vol. 30, Issue 9
  • DOI: 10.1073/pnas.30.9.244

Lattice Dynamics of Dense Lithium
journal, January 2012


Simulations: The dark side
journal, January 2013


Crystal Structure and Pair Potentials: A Molecular-Dynamics Study
journal, October 1980


A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

First-Principles Simulations of Lithium Melting: Stability of the bcc Phase Close to Melting
journal, May 2010


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Performance projections for the lithium tokamak experiment (LTX)
journal, April 2009


The crystal/liquid interface: structure and properties from computer simulation
journal, December 1992

  • Laird, Brian B.; Haymet, A. D. J.
  • Chemical Reviews, Vol. 92, Issue 8
  • DOI: 10.1021/cr00016a007

Toward an orbital-free density functional theory of transition metals based on an electron density decomposition
journal, January 2012


Kinetic-energy functional of the electron density
journal, June 1992


Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics
journal, June 2009


Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations
journal, December 2010


A comparison of methods for melting point calculation using molecular dynamics simulations
journal, April 2012

  • Zhang, Yong; Maginn, Edward J.
  • The Journal of Chemical Physics, Vol. 136, Issue 14
  • DOI: 10.1063/1.3702587

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Melting line of aluminum from simulations of coexisting phases
journal, February 1994


Inhomogeneous Electron Gas
journal, November 1964


Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials
journal, December 2012


Exchange-correlation energy and the phase diagram of Si
journal, November 2003


Predicted Novel High-Pressure Phases of Lithium
journal, January 2011


Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Tetrahedral Clustering in Molten Lithium under Pressure
journal, August 2008


The calculation of atomic fields
journal, January 1927

  • Thomas, L. H.
  • Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 23, Issue 5
  • DOI: 10.1017/S0305004100011683

A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities
journal, January 2003

  • Wu, Qin; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 118, Issue 6
  • DOI: 10.1063/1.1535422

The melting lines of model systems calculated from coexistence simulations
journal, June 2002

  • Morris, James R.; Song, Xueyu
  • The Journal of Chemical Physics, Vol. 116, Issue 21
  • DOI: 10.1063/1.1474581

Orbital-free kinetic-energy functionals for first-principles molecular dynamics
journal, February 1994


Cold melting and solid structures of dense lithium
journal, January 2011

  • Guillaume, Christophe L.; Gregoryanz, Eugene; Degtyareva, Olga
  • Nature Physics, Vol. 7, Issue 3
  • DOI: 10.1038/nphys1864

Orbital-free kinetic-energy functionals for the nearly free electron gas
journal, November 1998

  • Wang, Yan Alexander; Govind, Niranjan; Carter, Emily A.
  • Physical Review B, Vol. 58, Issue 20
  • DOI: 10.1103/PhysRevB.58.13465

High Pressure Melting of Lithium
journal, November 2012


Introducing PROFESS: A new program for orbital-free density functional theory calculations
journal, December 2008

  • Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
  • Computer Physics Communications, Vol. 179, Issue 11
  • DOI: 10.1016/j.cpc.2008.07.002

Explicit reversible integrators for extended systems dynamics
journal, April 1996

  • Martyna, Glenn J.; Tuckerman, Mark E.; Tobias, Douglas J.
  • Molecular Physics, Vol. 87, Issue 5
  • DOI: 10.1080/00268979600100761