skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lensless computational imaging through deep learning

Abstract

Deep learning has been proven to yield reliably generalizable solutions to numerous classification and decision tasks. Here, we demonstrate for the first time to our knowledge that deep neural networks (DNNs) can be trained to solve end-to-end inverse problems in computational imaging. We experimentally built and tested a lensless imaging system where a DNN was trained to recover phase objects given their propagated intensity diffraction patterns.

Authors:
; ; ;
Publication Date:
Research Org.:
Krell Inst., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1390388
Alternate Identifier(s):
OSTI ID: 1465165
Grant/Contract Number:  
FG02-97ER25308
Resource Type:
Published Article
Journal Name:
Optica
Additional Journal Information:
Journal Name: Optica Journal Volume: 4 Journal Issue: 9; Journal ID: ISSN 2334-2536
Publisher:
Optical Society of America
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Sinha, Ayan, Lee, Justin, Li, Shuai, and Barbastathis, George. Lensless computational imaging through deep learning. United States: N. p., 2017. Web. doi:10.1364/OPTICA.4.001117.
Sinha, Ayan, Lee, Justin, Li, Shuai, & Barbastathis, George. Lensless computational imaging through deep learning. United States. doi:10.1364/OPTICA.4.001117.
Sinha, Ayan, Lee, Justin, Li, Shuai, and Barbastathis, George. Fri . "Lensless computational imaging through deep learning". United States. doi:10.1364/OPTICA.4.001117.
@article{osti_1390388,
title = {Lensless computational imaging through deep learning},
author = {Sinha, Ayan and Lee, Justin and Li, Shuai and Barbastathis, George},
abstractNote = {Deep learning has been proven to yield reliably generalizable solutions to numerous classification and decision tasks. Here, we demonstrate for the first time to our knowledge that deep neural networks (DNNs) can be trained to solve end-to-end inverse problems in computational imaging. We experimentally built and tested a lensless imaging system where a DNN was trained to recover phase objects given their propagated intensity diffraction patterns.},
doi = {10.1364/OPTICA.4.001117},
journal = {Optica},
number = 9,
volume = 4,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1364/OPTICA.4.001117

Citation Metrics:
Cited by: 56 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cognitron: A self-organizing multilayered neural network
journal, January 1975


Learning representations by back-propagating errors
journal, October 1986

  • Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J.
  • Nature, Vol. 323, Issue 6088
  • DOI: 10.1038/323533a0

Human-level control through deep reinforcement learning
journal, February 2015

  • Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David
  • Nature, Vol. 518, Issue 7540
  • DOI: 10.1038/nature14236

Mastering the game of Go with deep neural networks and tree search
journal, January 2016

  • Silver, David; Huang, Aja; Maddison, Chris J.
  • Nature, Vol. 529, Issue 7587
  • DOI: 10.1038/nature16961

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Reconstruction of an object from the modulus of its Fourier transform
journal, January 1978


Digital Image Formation from Electronically Detected Holograms
journal, August 1967

  • Goodman, J. W.; Lawrence, R. W.
  • Applied Physics Letters, Vol. 11, Issue 3
  • DOI: 10.1063/1.1755043

Deterministic phase retrieval: a Green’s function solution
journal, January 1983

  • Teague, Michael Reed
  • Journal of the Optical Society of America, Vol. 73, Issue 11
  • DOI: 10.1364/JOSA.73.001434

Phase imaging by the transport equation of intensity
journal, February 1984


An Introduction To Compressive Sampling
journal, March 2008


Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization
journal, February 2003

  • Donoho, D. L.; Elad, M.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 5, p. 2197-2202
  • DOI: 10.1073/pnas.0437847100

Robust Image Deblurring With an Inaccurate Blur Kernel
journal, April 2012


Neural networks and physical systems with emergent collective computational abilities.
journal, April 1982

  • Hopfield, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 79, Issue 8
  • DOI: 10.1073/pnas.79.8.2554

Optical implementation of the Hopfield model for two-dimensional associative memory
journal, January 1988

  • Jang, Ju-Seog; Jung, Su-Won; Lee, Soo-Young
  • Optics Letters, Vol. 13, Issue 3
  • DOI: 10.1364/OL.13.000248

Learning-based imaging through scattering media
journal, January 2016

  • Horisaki, Ryoichi; Takagi, Ryosuke; Tanida, Jun
  • Optics Express, Vol. 24, Issue 13
  • DOI: 10.1364/OE.24.013738

Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media
journal, March 2010


Learning approach to optical tomography
journal, January 2015

  • Kamilov, Ulugbek S.; Papadopoulos, Ioannis N.; Shoreh, Morteza H.
  • Optica, Vol. 2, Issue 6
  • DOI: 10.1364/OPTICA.2.000517

Deep Convolutional Neural Network for Inverse Problems in Imaging
journal, September 2017

  • Jin, Kyong Hwan; McCann, Michael T.; Froustey, Emmanuel
  • IEEE Transactions on Image Processing, Vol. 26, Issue 9
  • DOI: 10.1109/TIP.2017.2713099

ImageNet Large Scale Visual Recognition Challenge
journal, April 2015

  • Russakovsky, Olga; Deng, Jia; Su, Hao
  • International Journal of Computer Vision, Vol. 115, Issue 3
  • DOI: 10.1007/s11263-015-0816-y

    Works referencing / citing this record:

    One-step robust deep learning phase unwrapping
    journal, January 2019


    Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology
    journal, January 2018

    • Jolivet, Frédéric; Momey, Fabien; Denis, Loïc
    • Optics Express, Vol. 26, Issue 7
    • DOI: 10.1364/oe.26.008923

    Real-time particle pollution sensing using machine learning
    journal, January 2018

    • Grant-Jacob, James A.; Mackay, Benita S.; Baker, James A. G.
    • Optics Express, Vol. 26, Issue 21
    • DOI: 10.1364/oe.26.027237

    Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery
    journal, January 2018


    Imaging through glass diffusers using densely connected convolutional networks
    journal, January 2018


    Computational complex optical field imaging using a designed metasurface diffuser
    journal, January 2018


    Reliable deep-learning-based phase imaging with uncertainty quantification
    journal, January 2019


    Low Photon Count Phase Retrieval Using Deep Learning
    journal, December 2018


    Deep iterative reconstruction for phase retrieval
    journal, January 2019

    • Işıl, Çağatay; Oktem, Figen S.; Koç, Aykut
    • Applied Optics, Vol. 58, Issue 20
    • DOI: 10.1364/ao.58.005422

    Low Photon Count Phase Retrieval Using Deep Learning
    journal, December 2018


    Deep iterative reconstruction for phase retrieval
    journal, January 2019

    • Işıl, Çağatay; Oktem, Figen S.; Koç, Aykut
    • Applied Optics, Vol. 58, Issue 20
    • DOI: 10.1364/ao.58.005422

    Regularized reconstruction of absorbing and phase objects from a single in-line hologram, application to fluid mechanics and micro-biology
    journal, January 2018

    • Jolivet, Frédéric; Momey, Fabien; Denis, Loïc
    • Optics Express, Vol. 26, Issue 7
    • DOI: 10.1364/oe.26.008923

    Real-time particle pollution sensing using machine learning
    journal, January 2018

    • Grant-Jacob, James A.; Mackay, Benita S.; Baker, James A. G.
    • Optics Express, Vol. 26, Issue 21
    • DOI: 10.1364/oe.26.027237

    One-step robust deep learning phase unwrapping
    journal, January 2019


    Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery
    journal, January 2018


    Imaging through glass diffusers using densely connected convolutional networks
    journal, January 2018


    Computational complex optical field imaging using a designed metasurface diffuser
    journal, January 2018


    Reliable deep-learning-based phase imaging with uncertainty quantification
    journal, January 2019