skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biocompatible and Flexible Hydrogel Diode-Based Mechanical Energy Harvesting

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [2];  [5]
  1. Department of Electrical Engineering, Pennsylvania State University, University Park PA 16802 USA
  2. Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA
  3. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA
  4. Energy Lab., Samsung Advanced Institute of Technology, Gyeonggi-do 443-803 South Korea
  5. Department of Electrical Engineering, Pennsylvania State University, University Park PA 16802 USA, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1390351
Grant/Contract Number:  
ERKCZ07
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials Technologies
Additional Journal Information:
Journal Name: Advanced Materials Technologies Journal Volume: 2 Journal Issue: 9; Journal ID: ISSN 2365-709X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Zhou, Yue, Hou, Ying, Li, Qi, Yang, Lu, Cao, Ye, Choi, Kyoung Hwan, Wang, Qing, and Zhang, Q. M. Biocompatible and Flexible Hydrogel Diode-Based Mechanical Energy Harvesting. United States: N. p., 2017. Web. doi:10.1002/admt.201700118.
Zhou, Yue, Hou, Ying, Li, Qi, Yang, Lu, Cao, Ye, Choi, Kyoung Hwan, Wang, Qing, & Zhang, Q. M. Biocompatible and Flexible Hydrogel Diode-Based Mechanical Energy Harvesting. United States. doi:10.1002/admt.201700118.
Zhou, Yue, Hou, Ying, Li, Qi, Yang, Lu, Cao, Ye, Choi, Kyoung Hwan, Wang, Qing, and Zhang, Q. M. Fri . "Biocompatible and Flexible Hydrogel Diode-Based Mechanical Energy Harvesting". United States. doi:10.1002/admt.201700118.
@article{osti_1390351,
title = {Biocompatible and Flexible Hydrogel Diode-Based Mechanical Energy Harvesting},
author = {Zhou, Yue and Hou, Ying and Li, Qi and Yang, Lu and Cao, Ye and Choi, Kyoung Hwan and Wang, Qing and Zhang, Q. M.},
abstractNote = {},
doi = {10.1002/admt.201700118},
journal = {Advanced Materials Technologies},
number = 9,
volume = 2,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/admt.201700118

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Porous PVDF As Effective Sonic Wave Driven Nanogenerators
journal, December 2011

  • Cha, SeungNam; Kim, Seong Min; Kim, HyunJin
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl202208n

A Nanogenerator for Energy Harvesting from a Rotating Tire and its Application as a Self-Powered Pressure/Speed Sensor
journal, August 2011


Vibration energy harvesting by magnetostrictive material
journal, June 2008


A Shape-Adaptive Thin-Film-Based Approach for 50% High-Efficiency Energy Generation Through Micro-Grating Sliding Electrification
journal, April 2014


A micro electromagnetic generator for vibration energy harvesting
journal, June 2007

  • Beeby, S. P.; Torah, R. N.; Tudor, M. J.
  • Journal of Micromechanics and Microengineering, Vol. 17, Issue 7
  • DOI: 10.1088/0960-1317/17/7/007

Flexible Ionic Diodes for Low-Frequency Mechanical Energy Harvesting
journal, November 2016


Nanotechnology-enabled flexible and biocompatible energy harvesting
journal, January 2010

  • Qi, Yi; McAlpine, Michael C.
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00137f

Energy harvesting vibration sources for microsystems applications
journal, October 2006


Self-powered nanowire devices
journal, March 2010

  • Xu, Sheng; Qin, Yong; Xu, Chen
  • Nature Nanotechnology, Vol. 5, Issue 5, p. 366-373
  • DOI: 10.1038/nnano.2010.46

Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency
journal, February 2010

  • Chang, Chieh; Tran, Van H.; Wang, Junbo
  • Nano Letters, Vol. 10, Issue 2, p. 726-731
  • DOI: 10.1021/nl9040719

Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System
journal, September 2013

  • Yang, Ya; Zhang, Hulin; Lin, Zong-Hong
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn403838y

Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices
journal, June 2012

  • Wu, Weiwei; Bai, Suo; Yuan, Miaomiao
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn3016585

Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems
journal, November 2012

  • Wang, Zhong Lin; Wu, Wenzhuo
  • Angewandte Chemie International Edition, Vol. 51, Issue 47, p. 11700-11721
  • DOI: 10.1002/anie.201201656

Role of polaron hopping in leakage current behavior of a SrTiO 3 single crystal
journal, December 2013

  • Cao, Y.; Bhattacharya, S.; Shen, J.
  • Journal of Applied Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.4842836

Flexible triboelectric generator
journal, March 2012


Charge dynamics and bending actuation in Aquivion membrane swelled with ionic liquids
journal, January 2011


Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films
journal, May 2012

  • Fan, Feng-Ru; Lin, Long; Zhu, Guang
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl300988z

Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
journal, January 2014

  • Dagdeviren, Canan; Yang, Byung Duk; Su, Yewang
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 5, p. 1927-1932
  • DOI: 10.1073/pnas.1317233111

Vertically aligned BaTiO 3 nanowire arrays for energy harvesting
journal, January 2014

  • Koka, Aneesh; Zhou, Zhi; Sodano, Henry A.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42540A

PVDF microbelts for harvesting energy from respiration
journal, January 2011

  • Sun, Chengliang; Shi, Jian; Bayerl, Dylan J.
  • Energy & Environmental Science, Vol. 4, Issue 11
  • DOI: 10.1039/c1ee02241e

1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers
journal, June 2010

  • Chen, Xi; Xu, Shiyou; Yao, Nan
  • Nano Letters, Vol. 10, Issue 6
  • DOI: 10.1021/nl100812k

Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array
journal, August 2010

  • Zhu, Guang; Yang, Rusen; Wang, Sihong
  • Nano Letters, Vol. 10, Issue 8, p. 3151-3155
  • DOI: 10.1021/nl101973h

Measurement techniques for piezoelectric nanogenerators
journal, January 2013

  • Briscoe, Joe; Jalali, Nimra; Woolliams, Peter
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee41889h

Highly durable all-fiber nanogenerator for mechanical energy harvesting
journal, January 2013

  • Zeng, Wei; Tao, Xiao-Ming; Chen, Song
  • Energy & Environmental Science, Vol. 6, Issue 9
  • DOI: 10.1039/c3ee41063c

Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics
journal, January 2016


Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies
journal, December 2012

  • Yang, Ya; Zhang, Hulin; Zhu, Guang
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305247x

Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy
journal, January 2011


Vibration energy harvesting with aluminum nitride-based piezoelectric devices
journal, August 2009