skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A highly stretchable, transparent, and conductive polymer

Abstract

Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

Authors:
 [1];  [1]; ORCiD logo [1];  [2];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [3];  [1];  [2];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); Samsung Advanced Institute of Technology, Gyeonggi-do (South Korea)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1390325
Grant/Contract Number:  
ID0EMNAK13699; FA9550-15-1-0106; ID0E4RAK13700; CMMI-1553638; ID0EEXAK13701; AC02-76SF00515; ID0E11AK13702
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 3; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; stretchable electronics; conducting polymer; transparent electrode; plasticizer; ionic dopant; soft interface; rigid-island; field-effect transistors; polymer characterization; patterning

Citation Formats

Wang, Yue, Zhu, Chenxin, Pfattner, Raphael, Yan, Hongping, Jin, Lihua, Chen, Shucheng, Molina-Lopez, Francisco, Lissel, Franziska, Liu, Jia, Rabiah, Noelle I., Chen, Zheng, Chung, Jong Won, Linder, Christian, Toney, Michael F., Murmann, Boris, and Bao, Zhenan. A highly stretchable, transparent, and conductive polymer. United States: N. p., 2017. Web. doi:10.1126/sciadv.1602076.
Wang, Yue, Zhu, Chenxin, Pfattner, Raphael, Yan, Hongping, Jin, Lihua, Chen, Shucheng, Molina-Lopez, Francisco, Lissel, Franziska, Liu, Jia, Rabiah, Noelle I., Chen, Zheng, Chung, Jong Won, Linder, Christian, Toney, Michael F., Murmann, Boris, & Bao, Zhenan. A highly stretchable, transparent, and conductive polymer. United States. doi:10.1126/sciadv.1602076.
Wang, Yue, Zhu, Chenxin, Pfattner, Raphael, Yan, Hongping, Jin, Lihua, Chen, Shucheng, Molina-Lopez, Francisco, Lissel, Franziska, Liu, Jia, Rabiah, Noelle I., Chen, Zheng, Chung, Jong Won, Linder, Christian, Toney, Michael F., Murmann, Boris, and Bao, Zhenan. Fri . "A highly stretchable, transparent, and conductive polymer". United States. doi:10.1126/sciadv.1602076. https://www.osti.gov/servlets/purl/1390325.
@article{osti_1390325,
title = {A highly stretchable, transparent, and conductive polymer},
author = {Wang, Yue and Zhu, Chenxin and Pfattner, Raphael and Yan, Hongping and Jin, Lihua and Chen, Shucheng and Molina-Lopez, Francisco and Lissel, Franziska and Liu, Jia and Rabiah, Noelle I. and Chen, Zheng and Chung, Jong Won and Linder, Christian and Toney, Michael F. and Murmann, Boris and Bao, Zhenan},
abstractNote = {Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.},
doi = {10.1126/sciadv.1602076},
journal = {Science Advances},
number = 3,
volume = 3,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 156 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A kirigami approach to engineering elasticity in nanocomposites through patterned defects
journal, June 2015

  • Shyu, Terry C.; Damasceno, Pablo F.; Dodd, Paul M.
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4327

Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability
journal, January 2011

  • Jung, Inhwa; Xiao, Jianliang; Malyarchuk, Viktor
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 5
  • DOI: 10.1073/pnas.1015440108

Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films
journal, March 2009

  • Dan, Budhadipta; Irvin, Glen C.; Pasquali, Matteo
  • ACS Nano, Vol. 3, Issue 4
  • DOI: 10.1021/nn8008307

Ionic/Electronic Conducting Characteristics of LiFePO[sub 4] Cathode Materials
journal, January 2007

  • Wang, Chunsheng; Hong, Jian
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 3
  • DOI: 10.1149/1.2409768

Highly Stable Carbon Nanotube Top-Gate Transistors with Tunable Threshold Voltage
journal, May 2014

  • Wang, Huiliang; Cobb, Brian; van Breemen, Albert
  • Advanced Materials, Vol. 26, Issue 26
  • DOI: 10.1002/adma.201400540

Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
journal, January 2015


Stretchable Inorganic-Semiconductor Electronic Systems
journal, April 2011

  • Hu, Xiaolong; Krull, Peter; de Graff, Bassel
  • Advanced Materials, Vol. 23, Issue 26, p. 2933-2936
  • DOI: 10.1002/adma.201100144

A Rubberlike Stretchable Active Matrix Using Elastic Conductors
journal, September 2008

  • Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Hata, Kenji
  • Science, Vol. 321, Issue 5895, p. 1468-1472
  • DOI: 10.1126/science.1160309

Conducting Polymer Dough for Deformable Electronics
journal, October 2015

  • Oh, Jin Young; Kim, Sunghee; Baik, Hong-Koo
  • Advanced Materials, Vol. 28, Issue 22
  • DOI: 10.1002/adma.201502947

Deviations of the glass transition temperature in amorphous conjugated polymer thin films
journal, August 2013


Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study
journal, January 1993


Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
journal, October 2011

  • Lipomi, Darren J.; Vosgueritchian, Michael; Tee, Benjamin C-K.
  • Nature Nanotechnology, Vol. 6, Issue 12, p. 788-792
  • DOI: 10.1038/nnano.2011.184

In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT)
journal, October 1999

  • Garreau, S.; Louarn, G.; Buisson, J. P.
  • Macromolecules, Vol. 32, Issue 20
  • DOI: 10.1021/ma9905674

Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate
journal, March 2015

  • Fu, Haoran; Xu, Sheng; Xu, Renxiao
  • Applied Physics Letters, Vol. 106, Issue 9
  • DOI: 10.1063/1.4913848

Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells
journal, February 2011

  • Kim, Yong Hyun; Sachse, Christoph; Machala, Michael L.
  • Advanced Functional Materials, Vol. 21, Issue 6
  • DOI: 10.1002/adfm.201002290

Highly Stretchable Transistors Using a Microcracked Organic Semiconductor
journal, April 2014


Molecularly Stretchable Electronics
journal, May 2014

  • Savagatrup, Suchol; Printz, Adam D.; O’Connor, Timothy F.
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm501021v

Materials for stretchable electronics
journal, March 2012


High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices
journal, February 2005

  • Ouyang, J.; Chu, C. -W.; Chen, F. -C.
  • Advanced Functional Materials, Vol. 15, Issue 2
  • DOI: 10.1002/adfm.200400016

Stretchable Electronics: Materials Strategies and Devices
journal, December 2008

  • Kim, Dae-Hyeong; Rogers, John A.
  • Advanced Materials, Vol. 20, Issue 24, p. 4887-4892
  • DOI: 10.1002/adma.200801788

Role of Interchain Coupling in the Metallic State of Conducting Polymers
journal, September 2012


Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization
journal, December 2013


Printable elastic conductors with a high conductivity for electronic textile applications
journal, June 2015

  • Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8461

Localization of Folds and Cracks in Thin Metal Films Coated on Flexible Elastomer Foams
journal, April 2013

  • Vandeparre, Hugues; Liu, Qihan; Minev, Ivan R.
  • Advanced Materials, Vol. 25, Issue 22
  • DOI: 10.1002/adma.201300587

Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium
journal, December 2001


Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder
journal, October 2005


Plasticization of PEDOT:PSS by Common Additives for Mechanically Robust Organic Solar Cells and Wearable Sensors
journal, November 2014

  • Savagatrup, Suchol; Chan, Esther; Renteria-Garcia, Sandro M.
  • Advanced Functional Materials, Vol. 25, Issue 3
  • DOI: 10.1002/adfm.201401758

25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress
journal, October 2013

  • Hammock, Mallory L.; Chortos, Alex; Tee, Benjamin C. -K.
  • Advanced Materials, Vol. 25, Issue 42
  • DOI: 10.1002/adma.201302240

The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing
journal, April 2015

  • Palumbiny, Claudia M.; Liu, Feng; Russell, Thomas P.
  • Advanced Materials, Vol. 27, Issue 22
  • DOI: 10.1002/adma.201500315

Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene)
journal, June 2000


Stretchable nanoparticle conductors with self-organized conductive pathways
journal, July 2013

  • Kim, Yoonseob; Zhu, Jian; Yeom, Bongjun
  • Nature, Vol. 500, Issue 7460, p. 59-63
  • DOI: 10.1038/nature12401

Universal Arrhenius Temperature Activated Charge Transport in Diodes from Disordered Organic Semiconductors
journal, February 2008


Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates
journal, December 2011

  • Lipomi, Darren J.; Lee, Jennifer A.; Vosgueritchian, Michael
  • Chemistry of Materials, Vol. 24, Issue 2
  • DOI: 10.1021/cm203216m

Ultrahigh electrical conductivity in solution-sheared polymeric transparent films
journal, October 2015

  • Worfolk, Brian J.; Andrews, Sean C.; Park, Steve
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 46
  • DOI: 10.1073/pnas.1509958112

Stretchable and Foldable Silicon Integrated Circuits
journal, April 2008


Highly conductive, printable and stretchable composite films of carbon nanotubes and silver
journal, November 2010

  • Chun, Kyoung-Yong; Oh, Youngseok; Rho, Jonghyun
  • Nature Nanotechnology, Vol. 5, Issue 12
  • DOI: 10.1038/nnano.2010.232

Charge-carrier transport in disordered organic solids
journal, September 2000


Stretchable Energy Storage and Conversion Devices
journal, January 2014


Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers
journal, August 2007

  • Hansen, T. S.; West, K.; Hassager, O.
  • Advanced Functional Materials, Vol. 17, Issue 16
  • DOI: 10.1002/adfm.200601243

    Works referencing / citing this record:

    Flexible Hybrid Electronics for Digital Healthcare
    journal, June 2019


    High‐Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology
    journal, July 2019

    • Matsuhisa, Naoji; Jiang, Ying; Liu, Zhiyuan
    • Advanced Electronic Materials, Vol. 5, Issue 8
    • DOI: 10.1002/aelm.201900347

    Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology
    journal, July 2018


    Scalable nanomanufacturing of inkjet-printed wearable energy storage devices
    journal, January 2019

    • Huang, Tao-Tse; Wu, Wenzhuo
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta05239a

    Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability
    journal, July 2019


    Highly Flexible and Efficient All-Polymer Solar Cells with High-Viscosity Processing Polymer Additive toward Potential of Stretchable Devices
    journal, September 2018

    • Chen, Shanshan; Jung, Sungwoo; Cho, Hye Jin
    • Angewandte Chemie International Edition, Vol. 57, Issue 40
    • DOI: 10.1002/anie.201807513

    Flexible Hybrid Electronics for Digital Healthcare
    journal, June 2019


    Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability
    journal, July 2019


    High‐Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology
    journal, July 2019

    • Matsuhisa, Naoji; Jiang, Ying; Liu, Zhiyuan
    • Advanced Electronic Materials, Vol. 5, Issue 8
    • DOI: 10.1002/aelm.201900347

    Highly Flexible and Efficient All-Polymer Solar Cells with High-Viscosity Processing Polymer Additive toward Potential of Stretchable Devices
    journal, September 2018

    • Chen, Shanshan; Jung, Sungwoo; Cho, Hye Jin
    • Angewandte Chemie International Edition, Vol. 57, Issue 40
    • DOI: 10.1002/anie.201807513

    Deformable and Stretchable Electrodes for Soft Electronic Devices
    journal, July 2019


    Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology
    journal, July 2018


    Scalable nanomanufacturing of inkjet-printed wearable energy storage devices
    journal, January 2019

    • Huang, Tao-Tse; Wu, Wenzhuo
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta05239a

    Screen-printed soft triboelectric nanogenerator with porous PDMS and stretchable PEDOT:PSS electrode
    journal, November 2019