DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries

Abstract

Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. Furthermore, during thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1390314
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 1; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium ion batteries; flame-retardant; smart separator; thermal responsive

Citation Formats

Liu, Kai, Liu, Wei, Qiu, Yongcai, Kong, Biao, Sun, Yongming, Chen, Zheng, Zhuo, Denys, Lin, Dingchang, and Cui, Yi. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. United States: N. p., 2017. Web. doi:10.1126/sciadv.1601978.
Liu, Kai, Liu, Wei, Qiu, Yongcai, Kong, Biao, Sun, Yongming, Chen, Zheng, Zhuo, Denys, Lin, Dingchang, & Cui, Yi. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. United States. https://doi.org/10.1126/sciadv.1601978
Liu, Kai, Liu, Wei, Qiu, Yongcai, Kong, Biao, Sun, Yongming, Chen, Zheng, Zhuo, Denys, Lin, Dingchang, and Cui, Yi. Fri . "Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries". United States. https://doi.org/10.1126/sciadv.1601978. https://www.osti.gov/servlets/purl/1390314.
@article{osti_1390314,
title = {Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries},
author = {Liu, Kai and Liu, Wei and Qiu, Yongcai and Kong, Biao and Sun, Yongming and Chen, Zheng and Zhuo, Denys and Lin, Dingchang and Cui, Yi},
abstractNote = {Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. Furthermore, during thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.},
doi = {10.1126/sciadv.1601978},
journal = {Science Advances},
number = 1,
volume = 3,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Improving battery safety by early detection of internal shorting with a bifunctional separator
journal, October 2014

  • Wu, Hui; Zhuo, Denys; Kong, Desheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6193

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

A review on electrolyte additives for lithium-ion batteries
journal, November 2006


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Fast and reversible thermoresponsive polymer switching materials for safer batteries
journal, January 2016


Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive
journal, October 2007


Nonflammable perfluoropolyether-based electrolytes for lithium batteries
journal, February 2014

  • Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1314615111

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres
journal, March 2012

  • Baginska, Marta; Blaiszik, Benjamin J.; Merriman, Ryan J.
  • Advanced Energy Materials, Vol. 2, Issue 5
  • DOI: 10.1002/aenm.201100683

Mussel- and Diatom-Inspired Silica Coating on Separators Yields Improved Power and Safety in Li-Ion Batteries
journal, August 2012

  • Kang, Sung Min; Ryou, Myung-Hyun; Choi, Jang Wook
  • Chemistry of Materials, Vol. 24, Issue 17
  • DOI: 10.1021/cm301967f

Flame retardation by phosphorus compounds
journal, May 1978


Battery Separators
journal, October 2004

  • Arora, Pankaj; Zhang, Zhengming (John)
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020738u

Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells
journal, December 2007


Effect of cyclic phosphate additive in non-flammable electrolyte
journal, June 2003


Superlattice Crystals-Mimic, Flexible/Functional Ceramic Membranes: Beyond Polymeric Battery Separators
journal, September 2015

  • Kim, Jeong-Hoon; Kim, Jung-Hwan; Kim, Ju-Myung
  • Advanced Energy Materials, Vol. 5, Issue 24
  • DOI: 10.1002/aenm.201500954

25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: “Noncovalent Interaction” Matters
journal, September 2013

  • Liu, Kai; Kang, Yuetong; Wang, Zhiqiang
  • Advanced Materials, Vol. 25, Issue 39
  • DOI: 10.1002/adma201302015

Safety mechanisms in lithium-ion batteries
journal, April 2006


Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries
journal, June 2005


Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries
journal, December 2015


Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery
journal, February 2014

  • Zhang, Jianjun; Yue, Liping; Kong, Qingshan
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03935

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Towards a Safe Lithium-Sulfur Battery with a Flame-Inhibiting Electrolyte and a Sulfur-Based Composite Cathode
journal, July 2014

  • Wang, Jiulin; Lin, Fengjiao; Jia, Hao
  • Angewandte Chemie International Edition, Vol. 53, Issue 38
  • DOI: 10.1002/anie.201405157

Electric field induced phase separation on electrospinning polyelectrolyte based core–shell nanofibers
journal, November 2012


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes
journal, January 2002

  • Xu, Kang; Ding, Michael S.; Zhang, Shengshui
  • Journal of The Electrochemical Society, Vol. 149, Issue 5
  • DOI: 10.1149/1.1467946

Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries
journal, December 2010


Preparation of PVDF/PVP core–shell nanofibers mats via homogeneous electrospinning
journal, April 2014


Flame-retardant additives for lithium-ion batteries
journal, June 2003


New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries
journal, March 2015


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes
journal, September 2004


Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Thermal runaway caused fire and explosion of lithium ion battery
journal, June 2012


Effects of additives on thermal stability of Li ion cells
journal, August 2005


A review on the key issues for lithium-ion battery management in electric vehicles
journal, March 2013


Development of a high-power lithium-ion battery
journal, September 1999


Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties
journal, January 2001

  • Wang, Xianming; Yasukawa, Eiki; Kasuya, Shigeaki
  • Journal of The Electrochemical Society, Vol. 148, Issue 10
  • DOI: 10.1149/1.1397773

Battery Separators
journal, December 2004


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, December 2004


Nonflammable perfluoropolyether-based electrolytes for lithium batteries
text, January 2014

  • L., Thelen, Jacob; S., Battaglia, Vincent; A., Pandya, Ashish
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/29h4-rr73

Towards a Safe Lithium-Sulfur Battery with a Flame-Inhibiting Electrolyte and a Sulfur-Based Composite Cathode
journal, July 2014


Works referencing / citing this record:

Dense, Self‐Formed Char Layer Enables a Fire‐Retardant Wood Structural Material
journal, February 2019

  • Gan, Wentao; Chen, Chaoji; Wang, Zhengyang
  • Advanced Functional Materials, Vol. 29, Issue 14
  • DOI: 10.1002/adfm.201807444

A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries
journal, August 2019

  • Ryu, Jaegeon; Song, Woo‐Jin; Lee, Sangyeop
  • Advanced Functional Materials, Vol. 30, Issue 2
  • DOI: 10.1002/adfm.201902499

Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage
journal, November 2019

  • Zheng, Bingna; Lin, Xidong; Zhang, Xingcai
  • Advanced Functional Materials, Vol. 30, Issue 41
  • DOI: 10.1002/adfm.201907006

Fire‐Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating
journal, January 2020

  • Gan, Wentao; Chen, Chaoji; Wang, Zhengyang
  • Advanced Functional Materials, Vol. 30, Issue 10
  • DOI: 10.1002/adfm.201909196

Flexible, High-Wettability and Fire-Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium-Ion Batteries
journal, October 2017


Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices
journal, January 2018


Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
journal, January 2018

  • Chen, Wei; Lei, Tianyu; Wu, Chunyang
  • Advanced Energy Materials, Vol. 8, Issue 10
  • DOI: 10.1002/aenm.201702348

A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Long-Cycle Lithium-Sulfur Batteries
journal, September 2018


An Aqueous Zn‐Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles
journal, October 2019

  • Wu, Shuilin; Chen, Yatu; Jiao, Tianpeng
  • Advanced Energy Materials, Vol. 9, Issue 47
  • DOI: 10.1002/aenm.201902915

Rapid homogenization preparation of the mussel‐inspired hydrophilic separator for high power lithium‐ion batteries
journal, February 2020

  • Li, Jingde; Bi, Songhu; Li, Meimei
  • Journal of Applied Polymer Science, Vol. 137, Issue 36
  • DOI: 10.1002/app.49052

Trimethyl Phosphate for Nonflammable Carbonate‐Based Electrolytes for Safer Room‐Temperature Sodium‐Sulfur Batteries
journal, February 2019

  • Zhao, Xiao‐Min; Yan, Yong‐Wang; Ren, Xiao‐Xia
  • ChemElectroChem, Vol. 6, Issue 4
  • DOI: 10.1002/celc.201801833

An Efficient, Scalable Route to Robust PVDF- co -HFP/SiO 2 Separator for Long-Cycle Lithium Ion Batteries
journal, August 2018

  • Boateng, Bismark; Zhu, Gaolong; Lv, Weiqiang
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 12, Issue 10
  • DOI: 10.1002/pssr.201800319

Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries
journal, December 2017


Smart Materials and Design toward Safe and Durable Lithium Ion Batteries
journal, May 2019


Electrospinning production of nanofibrous membranes
journal, December 2018

  • Mishra, Raghvendra Kumar; Mishra, Priyanka; Verma, Kartikey
  • Environmental Chemistry Letters, Vol. 17, Issue 2
  • DOI: 10.1007/s10311-018-00838-w

Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator
journal, April 2018


A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte
journal, July 2019


Challenges and opportunities towards fast-charging battery materials
journal, June 2019


Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte
journal, January 2018

  • Dou, Qingyun; Lei, Shulai; Wang, Da-Wei
  • Energy & Environmental Science, Vol. 11, Issue 11
  • DOI: 10.1039/c8ee01040d

A self-cooling and flame-retardant electrolyte for safer lithium ion batteries
journal, January 2018

  • Jiang, Lihua; Wang, Qingsong; Li, Ke
  • Sustainable Energy & Fuels, Vol. 2, Issue 6
  • DOI: 10.1039/c8se00111a

Pure OPM nanofibers with high piezoelectricity designed for energy harvesting in vitro and in vivo
journal, January 2018

  • Li, Tong; Feng, Zhang-Qi; Yan, Ke
  • Journal of Materials Chemistry B, Vol. 6, Issue 33
  • DOI: 10.1039/c8tb01702f

On/off switchable electronic conduction in intercalated metal-organic frameworks
journal, August 2017

  • Ogihara, Nobuhiro; Ohba, Nobuko; Kishida, Yoshihiro
  • Science Advances, Vol. 3, Issue 8
  • DOI: 10.1126/sciadv.1603103

Materials for lithium-ion battery safety
journal, June 2018


Safety Issues in Lithium Ion Batteries: Materials and Cell Design
journal, July 2019


Li-Ion Battery Fire Hazards and Safety Strategies
journal, August 2018

  • Kong, Lingxi; Li, Chuan; Jiang, Jiuchun
  • Energies, Vol. 11, Issue 9
  • DOI: 10.3390/en11092191