skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 17, 2018

Title: Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides

Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically for nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.
Authors:
ORCiD logo [1] ;  [2] ;  [3] ;  [4] ; ORCiD logo [4] ;  [4] ;  [5]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Report Number(s):
NREL/JA-5K00-70097
Journal ID: ISSN 0897-4756
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 16; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; chemical stability; computation theory; metastable phases; nitrogen; thermodynamics; transition metals
OSTI Identifier:
1390029