skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

Abstract

A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasiamore » (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3];  [4];  [3];  [5];  [5];  [6];  [4];  [7];  [8];  [9];  [10];  [8];  [5]
  1. Laboratoire des Sciences du Climat et de l' Environnement (LSCE), Gif sur Yvette (France)
  2. European Centre for Medium-Range Weather Forecasts, Reading, Berkshire (United Kingdom)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth, and Energy Division
  4. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States). Goddard Earth Sciences and Technology Center
  5. Univ. of Leeds (United Kingdom). Inst. for Climate and Atmospheric Science, School of Earth and Environment
  6. SRON Netherlands Inst. for Space Research, Utrecht (Netherlands); 7Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht (Netherlands)
  7. SRON Netherlands Inst. for Space Research, Utrecht (Netherlands); 7Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht (Netherlands); Wageningen Univ. and Research Centre, Wageningen (Netherlands)
  8. Research Inst. for Global Change/JAMSTEC, Yokohama (Japan)
  9. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Center for Global Change Science
  10. Univ. of Bristol (United Kingdom). School of Chemistry; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Center for Global Change Science
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1390020
Report Number(s):
LLNL-JRNL-639932
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 13; Journal Issue: 19; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES

Citation Formats

Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A., Szopa, S., Saunois, M., Agusti-Panareda, A., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Gloor, E., Houweling, S., Kawa, S. R., Krol, M., Patra, P. K., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. United States: N. p., 2013. Web. doi:10.5194/acp-13-9917-2013.
Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A., Szopa, S., Saunois, M., Agusti-Panareda, A., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Gloor, E., Houweling, S., Kawa, S. R., Krol, M., Patra, P. K., Prinn, R. G., Rigby, M., Saito, R., & Wilson, C. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. United States. doi:10.5194/acp-13-9917-2013.
Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A., Szopa, S., Saunois, M., Agusti-Panareda, A., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Gloor, E., Houweling, S., Kawa, S. R., Krol, M., Patra, P. K., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C. Tue . "Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling". United States. doi:10.5194/acp-13-9917-2013. https://www.osti.gov/servlets/purl/1390020.
@article{osti_1390020,
title = {Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling},
author = {Locatelli, R. and Bousquet, P. and Chevallier, F. and Fortems-Cheney, A. and Szopa, S. and Saunois, M. and Agusti-Panareda, A. and Bergmann, D. and Bian, H. and Cameron-Smith, P. and Chipperfield, M. P. and Gloor, E. and Houweling, S. and Kawa, S. R. and Krol, M. and Patra, P. K. and Prinn, R. G. and Rigby, M. and Saito, R. and Wilson, C.},
abstractNote = {A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.},
doi = {10.5194/acp-13-9917-2013},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 19,
volume = 13,
place = {United States},
year = {2013},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements
journal, January 2007

  • Allan, W.; Struthers, H.; Lowe, D. C.
  • Journal of Geophysical Research, Vol. 112, Issue D4
  • DOI: 10.1029/2006JD007369

Emission of trace gases and aerosols from biomass burning
journal, December 2001

  • Andreae, M. O.; Merlet, P.
  • Global Biogeochemical Cycles, Vol. 15, Issue 4
  • DOI: 10.1029/2000GB001382

Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air
journal, August 2011

  • Aydin, Murat; Verhulst, Kristal R.; Saltzman, Eric S.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10352

Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM
journal, January 2011

  • Belikov, D.; Maksyutov, S.; Miyasaka, T.
  • Geoscientific Model Development, Vol. 4, Issue 1
  • DOI: 10.5194/gmd-4-207-2011

Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection
journal, January 2013

  • Belikov, D. A.; Maksyutov, S.; Krol, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 3
  • DOI: 10.5194/acp-13-1093-2013

Inverse modelling of national and European CH<sub>4</sub> emissions using the atmospheric zoom model TM5
journal, January 2005

  • Bergamaschi, P.; Krol, M.; Dentener, F.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 9
  • DOI: 10.5194/acp-5-2431-2005

Inverse modeling of European CH 4 emissions 2001–2006
journal, January 2010

  • Bergamaschi, P.; Krol, M.; Meirink, J. F.
  • Journal of Geophysical Research, Vol. 115, Issue D22
  • DOI: 10.1029/2010JD014180

A test of sensitivity to convective transport in a global atmospheric CO 2 simulation
journal, January 2006


Contribution of anthropogenic and natural sources to atmospheric methane variability
journal, September 2006


Source attribution of the changes in atmospheric methane for 2006–2008
journal, January 2011

  • Bousquet, P.; Ringeval, B.; Pison, I.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3689-2011

Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model: ATMOSPHERIC METHANE INVERSION
journal, May 2006

  • Chen, Yu-Han; Prinn, Ronald G.
  • Journal of Geophysical Research: Atmospheres, Vol. 111, Issue D10
  • DOI: 10.1029/2005JD006058

Inferring CO 2 sources and sinks from satellite observations: Method and application to TOVS data
journal, January 2005

  • Chevallier, F.; Fisher, M.; Peylin, P.
  • Journal of Geophysical Research, Vol. 110, Issue D24
  • DOI: 10.1029/2005JD006390

Impact of correlated observation errors on inverted CO 2 surface fluxes from OCO measurements
journal, January 2007


On the impact of transport model errors for the estimation of CO 2 surface fluxes from GOSAT observations: CO 2 TRANSPORT MODEL ERRORS
journal, November 2010

  • Chevallier, Frédéric; Feng, Liang; Bösch, Hartmut
  • Geophysical Research Letters, Vol. 37, Issue 21
  • DOI: 10.1029/2010GL044652

New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments
journal, April 2006

  • Chipperfield, M. P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 132, Issue 617
  • DOI: 10.1256/qj.05.51

Three-dimensional transport and concentration of SF6. A model intercomparison study (TransCom 2)
journal, April 1999


Global atmospheric methane: budget, changes and dangers
journal, May 2011

  • Dlugokencky, Edward J.; Nisbet, Euan G.; Fisher, Rebecca
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, Issue 1943
  • DOI: 10.1098/rsta.2010.0341

Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4)
journal, January 2010

  • Emmons, L. K.; Walters, S.; Hess, P. G.
  • Geoscientific Model Development, Vol. 3, Issue 1
  • DOI: 10.5194/gmd-3-43-2010

On error estimation in atmospheric CO 2 inversions
journal, January 2002

  • Engelen, Richard J.
  • Journal of Geophysical Research, Vol. 107, Issue D22
  • DOI: 10.1029/2002JD002195

What Is an Adjoint Model?
journal, November 1997


Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core
journal, September 1992


Linking ozone pollution and climate change: The case for controlling methane: LINKING OZONE POLLUTION AND CLIMATE CHANGE
journal, October 2002

  • Fiore, Arlene M.; Jacob, Daniel J.; Field, Brendan D.
  • Geophysical Research Letters, Vol. 29, Issue 19
  • DOI: 10.1029/2002GL015601

Comparing atmospheric transport models for future regional inversions over Europe – Part 1: mapping the atmospheric CO<sub>2</sub> signals
journal, January 2007


Improvements in a half degree atmosphere/land version of the CCSM
journal, July 2009


Vertical mixing in atmospheric tracer transport models: error characterization and propagation
journal, January 2008

  • Gerbig, C.; Körner, S.; Lin, J. C.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 3
  • DOI: 10.5194/acp-8-591-2008

A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO 2 on a continental scale
journal, June 1999

  • Gloor, Manuel; Fan, Song-Miao; Pacala, Stephen
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D12
  • DOI: 10.1029/1999JD900132

Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models
journal, February 2002

  • Gurney, Kevin Robert; Law, Rachel M.; Denning, A. Scott
  • Nature, Vol. 415, Issue 6872
  • DOI: 10.1038/415626a

An inverse modeling approach to investigate the global atmospheric methane cycle
journal, March 1997

  • Hein, Ralf; Crutzen, Paul J.; Heimann, Martin
  • Global Biogeochemical Cycles, Vol. 11, Issue 1
  • DOI: 10.1029/96GB03043

The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model
journal, July 2002

  • Hortal, Mariano
  • Quarterly Journal of the Royal Meteorological Society, Vol. 128, Issue 583
  • DOI: 10.1002/qj.200212858314

The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection
journal, August 2006


Inverse modeling of methane sources and sinks using the adjoint of a global transport model
journal, November 1999

  • Houweling, Sander; Kaminski, Thomas; Dentener, Frank
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D21
  • DOI: 10.1029/1999JD900428

The importance of transport model uncertainties for the estimation of CO 2 sources and sinks using satellite measurements
journal, January 2010

  • Houweling, S.; Aben, I.; Breon, F. -M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 20
  • DOI: 10.5194/acp-10-9981-2010

Iconic CO2 Time Series at Risk
journal, August 2012


Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources
journal, August 2011

  • Kai, Fuu Ming; Tyler, Stanley C.; Randerson, James T.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10259

On aggregation errors in atmospheric transport inversions
journal, March 2001

  • Kaminski, Thomas; Rayner, Peter J.; Heimann, Martin
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D5
  • DOI: 10.1029/2000JD900581

Global CO 2 transport simulations using meteorological data from the NASA data assimilation system
journal, January 2004


Unified treatment of dry convective and stratocumulus-topped boundary layers in the ECMWF model
journal, January 2011

  • Köhler, M.; Ahlgrimm, M.; Beljaars, A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 654
  • DOI: 10.1002/qj.713

The two-way nested global chemistry-transport zoom model TM5: algorithm and applications
journal, January 2005

  • Krol, M.; Houweling, S.; Bregman, B.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 2
  • DOI: 10.5194/acp-5-417-2005

Land surface processes in a simplified general circulation model
journal, January 1981

  • Laval, K.; Sadourny, R.; Serafini, Y.
  • Geophysical & Astrophysical Fluid Dynamics, Vol. 17, Issue 1
  • DOI: 10.1080/03091928108243677

Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO 2 inversions
journal, December 1996

  • Law, R. M.; Rayner, P. J.; Denning, A. S.
  • Global Biogeochemical Cycles, Vol. 10, Issue 4
  • DOI: 10.1029/96GB01892

Data and modelling requirements for CO2 inversions using high-frequency data
journal, April 2003


Using atmospheric CO 2 data to assess a simplified carbon-climate simulation for the 20th century
journal, January 2006


No inter-hemispheric δ13CH4 trend observed
journal, June 2012


Accounting for the effect of transport errors on tracer inversions
journal, January 2005


A parametric model of vertical eddy fluxes in the atmosphere
journal, September 1979

  • Louis, Jean-Fran�ois
  • Boundary-Layer Meteorology, Vol. 17, Issue 2
  • DOI: 10.1007/BF00117978

Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion
journal, January 2008

  • Meirink, J. F.; Bergamaschi, P.; Krol, M. C.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 21
  • DOI: 10.5194/acp-8-6341-2008

Non-CO2 greenhouse gases and climate change
journal, August 2011

  • Montzka, S. A.; Dlugokencky, E. J.; Butler, J. H.
  • Nature, Vol. 476, Issue 7358
  • DOI: 10.1038/nature10322

Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere
journal, January 2009

  • K. Patra, Prabir; Takigawa, Masayuki; Ishijima, Kentaro
  • Journal of the Meteorological Society of Japan, Vol. 87, Issue 4
  • DOI: 10.2151/jmsj.87.635

Daily CO<sub>2</sub> flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology
journal, January 2005

  • Peylin, P.; Rayner, P. J.; Bousquet, P.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 12
  • DOI: 10.5194/acp-5-3173-2005

Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada)
journal, January 2011

  • Pickett-Heaps, C. A.; Jacob, D. J.; Wecht, K. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3773-2011

Multi-species inversion of CH 4 , CO and H 2 emissions from surface measurements
journal, January 2009

  • Pison, I.; Bousquet, P.; Chevallier, F.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5281-2009

Numerical advection by conservation of second-order moments
journal, January 1986


A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE
journal, July 2000

  • Prinn, R. G.; Weiss, R. F.; Fraser, P. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D14
  • DOI: 10.1029/2000JD900141

Renewed growth of atmospheric methane
journal, January 2008

  • Rigby, M.; Prinn, R. G.; Fraser, P. J.
  • Geophysical Research Letters, Vol. 35, Issue 22
  • DOI: 10.1029/2008GL036037

CO<sub>2</sub> flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport
journal, January 2003

  • Rödenbeck, C.; Houweling, S.; Gloor, M.
  • Atmospheric Chemistry and Physics, Vol. 3, Issue 6
  • DOI: 10.5194/acp-3-1919-2003

TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements: TRANSCOM-CH 4 MODELING OF AIRCRAFT OBSERVATIONS
journal, May 2013

  • Saito, Ryu; Patra, Prabir K.; Sweeney, Colm
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 9
  • DOI: 10.1002/jgrd.50380

Long-term decline of global atmospheric ethane concentrations and implications for methane
journal, August 2012

  • Simpson, Isobel J.; Sulbaek Andersen, Mads P.; Meinardi, Simone
  • Nature, Vol. 488, Issue 7412
  • DOI: 10.1038/nature11342

Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores
journal, November 2005


Three-dimensional climatological distribution of tropospheric OH: Update and evaluation
journal, April 2000

  • Spivakovsky, C. M.; Logan, J. A.; Montzka, S. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D7
  • DOI: 10.1029/1999JD901006

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2
journal, June 2007


TransCom continuous experiment: comparison of 222 Rn transport at hourly time scales at three stations in Germany
journal, January 2011

  • Taguchi, S.; Law, R. M.; Rödenbeck, C.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10071-2011

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
journal, January 2010

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11707-2010

A global-scale Lagrangian trace species model of transport, transformation, and removal processes
journal, January 1988

  • Walton, John J.; MacCracken, Michael C.; Ghan, Steven J.
  • Journal of Geophysical Research, Vol. 93, Issue D7
  • DOI: 10.1029/JD093iD07p08339

A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion
journal, January 2011

  • Yver, C. E.; Pison, I. C.; Fortems-Cheiney, A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3375-2011

    Works referencing / citing this record:

    Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere
    journal, January 2016

    • Ostler, Andreas; Sussmann, Ralf; Patra, Prabir K.
    • Atmospheric Measurement Techniques, Vol. 9, Issue 9
    • DOI: 10.5194/amt-9-4843-2016

    Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration
    journal, January 2016

    • Zazzeri, Giulia; Lowry, Dave; Fisher, Rebecca E.
    • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
    • DOI: 10.5194/acp-16-13669-2016

    Modelling CO 2 weather – why horizontal resolution matters
    journal, January 2019

    • Agustí-Panareda, Anna; Diamantakis, Michail; Massart, Sébastien
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 11
    • DOI: 10.5194/acp-19-7347-2019

    Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere
    journal, January 2016

    • Ostler, Andreas; Sussmann, Ralf; Patra, Prabir K.
    • Atmospheric Measurement Techniques, Vol. 9, Issue 9
    • DOI: 10.5194/amt-9-4843-2016

    Improving the inter-hemispheric gradient of total column atmospheric CO 2 and CH 4 in simulations with the ECMWF semi-Lagrangian atmospheric global model
    journal, January 2017

    • Agusti-Panareda, Anna; Diamantakis, Michail; Bayona, Victor
    • Geoscientific Model Development, Vol. 10, Issue 1
    • DOI: 10.5194/gmd-10-1-2017

    Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH 4 v1.0
    journal, January 2017

    • Tsuruta, Aki; Aalto, Tuula; Backman, Leif
    • Geoscientific Model Development, Vol. 10, Issue 3
    • DOI: 10.5194/gmd-10-1261-2017

    Objectified quantification of uncertainties in Bayesian atmospheric inversions
    journal, January 2015

    • Berchet, A.; Pison, I.; Chevallier, F.
    • Geoscientific Model Development, Vol. 8, Issue 5
    • DOI: 10.5194/gmd-8-1525-2015