skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on August 31, 2018

Title: Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1 eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5K00-67143
Journal ID: ISSN 0927-0248
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Solar Energy Materials and Solar Cells
Additional Journal Information:
Journal Volume: 174; Journal Issue: C; Journal ID: ISSN 0927-0248
Publisher:
Elsevier
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; admittance spectroscopy; capacitance; cross-sectional electron-beam induced current (EBIC); Cu(In,Ga)Se2 (CIGS); deep-level transient spectroscopy (DLTS); drive-level capacitance profiling (DLCP); electrical characterization; optical-DLTS; thin-film photovoltaics; time-resolved photoluminescence (TRPL); two-photon excitation
OSTI Identifier:
1389740