DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon

Abstract

Abstract While silicon (Si) has tenfold capacity of commercially used graphite, its application is still limited due to its limited cyclability. In this in situ X‐ray reflectivity study, a detailed mechanistic model of the first two (de)lithiation processes of a silicon wafer is presented, which sheds light onto the fundamental difference of the reaction of Li ions with crystalline and amorphous materials. Furthermore, this study provides insight into the formation and further evolution of the inorganic solid electrolyte interphase (SEI) layer on Si anodes. The results show that the lithiation of crystalline Si is a layer‐by‐layer, reaction limited two‐phase process, but the delithiation of Li x Si (resulting in amorphous Si) and the lithiation of amorphous Si are reaction‐limited single‐phase processes. Furthermore, the thickness‐density product of the inorganic SEI layer increases during lithiation and decreases during delithiation, resembling a “breathing” behavior; the inorganic SEI layer thickness varies between 40 and 70 Å. Additionally, a low‐electron‐density “Li‐dip” layer is found between the SEI and lithiated Si during the delithiation process, suggesting kinetically limited ion transport within the SEI, which is speculated to be one of the origins of battery's internal resistance. Several implications of the findings on battery performance in generalmore » are discussed.« less

Authors:
 [1];  [2];  [2]; ORCiD logo [2]
  1. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA, Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
  2. SSRL Materials Science Division SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1389664
Grant/Contract Number:  
DE‐AC02‐76SF00515
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials Interfaces
Additional Journal Information:
Journal Name: Advanced Materials Interfaces Journal Volume: 4 Journal Issue: 22; Journal ID: ISSN 2196-7350
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Cao, Chuntian, Steinrück, Hans‐Georg, Shyam, Badri, and Toney, Michael F. The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon. Germany: N. p., 2017. Web. doi:10.1002/admi.201700771.
Cao, Chuntian, Steinrück, Hans‐Georg, Shyam, Badri, & Toney, Michael F. The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon. Germany. https://doi.org/10.1002/admi.201700771
Cao, Chuntian, Steinrück, Hans‐Georg, Shyam, Badri, and Toney, Michael F. Tue . "The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon". Germany. https://doi.org/10.1002/admi.201700771.
@article{osti_1389664,
title = {The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon},
author = {Cao, Chuntian and Steinrück, Hans‐Georg and Shyam, Badri and Toney, Michael F.},
abstractNote = {Abstract While silicon (Si) has tenfold capacity of commercially used graphite, its application is still limited due to its limited cyclability. In this in situ X‐ray reflectivity study, a detailed mechanistic model of the first two (de)lithiation processes of a silicon wafer is presented, which sheds light onto the fundamental difference of the reaction of Li ions with crystalline and amorphous materials. Furthermore, this study provides insight into the formation and further evolution of the inorganic solid electrolyte interphase (SEI) layer on Si anodes. The results show that the lithiation of crystalline Si is a layer‐by‐layer, reaction limited two‐phase process, but the delithiation of Li x Si (resulting in amorphous Si) and the lithiation of amorphous Si are reaction‐limited single‐phase processes. Furthermore, the thickness‐density product of the inorganic SEI layer increases during lithiation and decreases during delithiation, resembling a “breathing” behavior; the inorganic SEI layer thickness varies between 40 and 70 Å. Additionally, a low‐electron‐density “Li‐dip” layer is found between the SEI and lithiated Si during the delithiation process, suggesting kinetically limited ion transport within the SEI, which is speculated to be one of the origins of battery's internal resistance. Several implications of the findings on battery performance in general are discussed.},
doi = {10.1002/admi.201700771},
journal = {Advanced Materials Interfaces},
number = 22,
volume = 4,
place = {Germany},
year = {Tue Sep 12 00:00:00 EDT 2017},
month = {Tue Sep 12 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/admi.201700771

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Two-Phase Electrochemical Lithiation in Amorphous Silicon
journal, January 2013

  • Wang, Jiang Wei; He, Yu; Fan, Feifei
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl304379k

Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

The Electrochemical Intercalation of Li into Graphite in Li/Polymer Electrolyte/Graphite Cells
journal, January 1995

  • Jiang, Z.
  • Journal of The Electrochemical Society, Vol. 142, Issue 2
  • DOI: 10.1149/1.2043997

Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
journal, September 2012

  • Schroder, Kjell W.; Celio, Hugo; Webb, Lauren J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp307372m

Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon
journal, July 2011


Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage
journal, January 2012

  • Du, Zhijia; Zhang, Shichao; Liu, Yi
  • Journal of Materials Chemistry, Vol. 22, Issue 23
  • DOI: 10.1039/c2jm31419c

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

A New Lipid Anchor for Sparsely Tethered Bilayer Lipid Membranes
journal, April 2009

  • Heinrich, Frank; Ng, Tiffany; Vanderah, David J.
  • Langmuir, Vol. 25, Issue 7
  • DOI: 10.1021/la8033275

Density of amorphous Si
journal, January 1994

  • Custer, J. S.; Thompson, Michael O.; Jacobson, D. C.
  • Applied Physics Letters, Vol. 64, Issue 4
  • DOI: 10.1063/1.111121

Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity
journal, November 2016


Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries
journal, January 2013

  • Jerliu, B.; Dörrer, L.; Hüger, E.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 20
  • DOI: 10.1039/c3cp44438d

Lithium transport within the solid electrolyte interphase
journal, October 2011


Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity
journal, July 2016

  • Seidlhofer, Beatrix-Kamelia; Jerliu, Bujar; Trapp, Marcus
  • ACS Nano, Vol. 10, Issue 8
  • DOI: 10.1021/acsnano.6b02032

In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Asymmetric Rate Behavior of Si Anodes for Lithium-Ion Batteries: Ultrafast De-Lithiation versus Sluggish Lithiation at High Current Densities
journal, November 2014

  • Li, Juchuan; Dudney, Nancy J.; Xiao, Xingcheng
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401627

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Liquid Surfaces and Interfaces: Synchrotron X-ray Methods
book, September 2012


In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Pseudorotational Epitaxy of Self-Assembled Octadecyltrichlorosilane Monolayers on Sapphire (0001)
journal, October 2014


Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries
journal, January 2014

  • Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang
  • Nanoscale, Vol. 6, Issue 1
  • DOI: 10.1039/C3NR04323A

Interfacing electrolytes with electrodes in Li ion batteries
journal, January 2011

  • Xu, Kang; von Cresce, Arthur
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04309e

Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries
journal, November 2014

  • Schroder, Kjell W.; Dylla, Anthony G.; Harris, Stephen J.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 23
  • DOI: 10.1021/am506517j

In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries
journal, January 2001


SEI Layer Formation on Amorphous Si Thin Electrode during Precycling
journal, January 2007

  • Lee, Yong Min; Lee, Jun Young; Shim, Heung-Taek
  • Journal of The Electrochemical Society, Vol. 154, Issue 6, p. A515-A519
  • DOI: 10.1149/1.2719644

In Situ Atomic Force Microscopy Study of Initial Solid Electrolyte Interphase Formation on Silicon Electrodes for Li-Ion Batteries
journal, April 2014

  • Tokranov, Anton; Sheldon, Brian W.; Li, Chunzeng
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9
  • DOI: 10.1021/am500363t

Effect of Al 2 O 3 Coating on Stabilizing LiNi 0.4 Mn 0.4 Co 0.2 O 2 Cathodes
journal, August 2015


Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
journal, January 2016

  • Ashuri, Maziar; He, Qianran; Shaw, Leon L.
  • Nanoscale, Vol. 8, Issue 1
  • DOI: 10.1039/C5NR05116A

In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes
journal, May 2012

  • Misra, Sumohan; Liu, Nian; Nelson, Johanna
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301339g

Nanoscale Structure of Si/SiO 2 /Organics Interfaces
journal, November 2014

  • Steinrück, Hans-Georg; Schiener, Andreas; Schindler, Torben
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn5056223

Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode
journal, August 2015

  • Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. Kevin
  • The Journal of Physical Chemistry C, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcc.5b06817

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


X-Ray Scattering from Soft-Matter Thin Films
book, January 1999


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
journal, June 2015

  • Zhao, Jie; Lu, Zhenda; Wang, Haotian
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04526

Interferenz von Röntgenstrahlen an dünnen Schichten
journal, January 1931


Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry
journal, January 2016

  • Fears, T. M.; Doucet, M.; Browning, J. F.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/C6CP00978F