skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery

Abstract

The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm-2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm-2 to 7.5 mAh cm-2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAh cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li2S4 to insoluble Li2S2/Li2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm-2. For electrodes with 7.0 mAh cm-2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.

Authors:
 [1];  [2];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Stony Brook Univ., NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1389219
Report Number(s):
BNL-114125-2017-JA
Journal ID: ISSN 2381-6872; R&D Project: 20927
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Electrochemical Energy Conversion and Storage
Additional Journal Information:
Journal Volume: 13; Journal Issue: 2; Journal ID: ISSN 2381-6872
Publisher:
ASME
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Lithium-sulfur battery; sulfur utilization; sulfur loading; activation.

Citation Formats

Sun, Ke, Liu, Helen, and Gan, Hong. Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery. United States: N. p., 2016. Web. doi:10.1115/1.4034738.
Sun, Ke, Liu, Helen, & Gan, Hong. Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery. United States. doi:10.1115/1.4034738.
Sun, Ke, Liu, Helen, and Gan, Hong. Sun . "Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery". United States. doi:10.1115/1.4034738. https://www.osti.gov/servlets/purl/1389219.
@article{osti_1389219,
title = {Cathode Loading Effect on Sulfur Utilization in Lithium–Sulfur Battery},
author = {Sun, Ke and Liu, Helen and Gan, Hong},
abstractNote = {The Lithium-Sulfur (Li-S) battery is under intensive research in recent years due to its potential to provide higher energy density and lower cost than the current state-of-the-art lithium-ion battery technology. To meet cost target for transportation application, high sulfur loading up to 8 mAh cm-2 is predicted by modeling. In this work, we have investigated the sulfur loading effect on the galvanostatic charge/discharge cycling performance of Li-S cells with theoretical sulfur loading ranging from 0.5 mAh cm-2 to 7.5 mAh cm-2. We found that the low sulfur utilization of electrodes with sulfur loading of > 3.0 mAh cm-2 is due to their inability to deliver capacities at the 2.1V voltage plateau, which corresponds to the conversion of soluble Li2S4 to insoluble Li2S2/Li2S. This electrochemical conversion process recovers to deliver the expected sulfur utilization after several activation cycles for electrodes with sulfur loading up to 4.5 mAh cm-2. For electrodes with 7.0 mAh cm-2 loading, no sulfur utilization recovery was observed for 100 cycles. The root cause of this phenomenon is elucidated by SEM/EDS and EIS investigation. Carbon interlayer cell design and low rate discharge activation are demonstrated to be effective mitigation methods.},
doi = {10.1115/1.4034738},
journal = {Journal of Electrochemical Energy Conversion and Storage},
number = 2,
volume = 13,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie, Vol. 123, Issue 26, p. 6026-6030
  • DOI: 10.1002/ange.201100637

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
journal, January 2015


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries
journal, August 2015


Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
journal, January 2010

  • Zhang, B.; Qin, X.; Li, G. R.
  • Energy & Environmental Science, Vol. 3, Issue 10
  • DOI: 10.1039/c002639e

A lithium–sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth–sulfur material
journal, January 2014

  • Miao, Lixiao; Wang, Weikun; Yuan, Keguo
  • Chem. Commun., Vol. 50, Issue 87
  • DOI: 10.1039/C4CC03410D

Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26, p. 5904-5908
  • DOI: 10.1002/anie.201100637

Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading
journal, April 2014

  • Lu, Songtao; Chen, Yan; Wu, Xiaohong
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04629

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries
journal, February 2013

  • Zheng, Guangyuan; Zhang, Qianfan; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1265-1270
  • DOI: 10.1021/nl304795g

Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries
journal, October 2013

  • Zhou, Weidong; Yu, Yingchao; Chen, Hao
  • Journal of the American Chemical Society, Vol. 135, Issue 44
  • DOI: 10.1021/ja409508q

Cost modeling of lithium-ion battery cells for automotive applications
journal, October 2014

  • Patry, Gaëtan; Romagny, Alex; Martinet, Sébastien
  • Energy Science & Engineering, Vol. 3, Issue 1
  • DOI: 10.1002/ese3.47

Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium-Sulfur Batteries
journal, July 2014

  • Yuan, Zhe; Peng, Hong-Jie; Huang, Jia-Qi
  • Advanced Functional Materials, Vol. 24, Issue 39
  • DOI: 10.1002/adfm.201401501

Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery
journal, January 2015

  • Eroglu, Damla; Zavadil, Kevin R.; Gallagher, Kevin G.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0611506jes

A Lithium-Sulfur Battery with a High Areal Energy Density
journal, June 2014

  • Kim, Joo-Seong; Hwang, Tae Hoon; Kim, Byung Gon
  • Advanced Functional Materials, Vol. 24, Issue 34
  • DOI: 10.1002/adfm.201400935

Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries
journal, November 2011

  • Elazari, Ran; Salitra, Gregory; Garsuch, Arnd
  • Advanced Materials, Vol. 23, Issue 47, p. 5641-5644
  • DOI: 10.1002/adma.201103274

Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading
journal, January 2013

  • Deng, Zhaofeng; Zhang, Zhian; Lai, Yanqing
  • Journal of The Electrochemical Society, Vol. 160, Issue 4
  • DOI: 10.1149/2.026304jes

Effect of sulfur loading on energy density of lithium sulfur batteries: Energy density of lithium sulfur batteries
journal, March 2014

  • Kang, Sung-Hwan; Zhao, Xiaohui; Manuel, James
  • physica status solidi (a), Vol. 211, Issue 8
  • DOI: 10.1002/pssa.201330569

Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
journal, October 2011

  • Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.
  • Nano Letters, Vol. 11, Issue 10, p. 4462-4467
  • DOI: 10.1021/nl2027684

A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density
journal, August 2012


Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


The effect of sulfur loading on the electrochemical performance of a sulfur–polymer composite cathode coated on aluminium foil
journal, January 2014

  • Doan, The Nam Long; Gosselink, Denise; Hoang, Tuan K. A.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/c4cp00974f

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

    Works referencing / citing this record:

    Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
    journal, June 2013


    A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
    journal, May 2009

    • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
    • Nature Materials, Vol. 8, Issue 6, p. 500-506
    • DOI: 10.1038/nmat2460

    Cost modeling of lithium-ion battery cells for automotive applications
    journal, October 2014

    • Patry, Gaëtan; Romagny, Alex; Martinet, Sébastien
    • Energy Science & Engineering, Vol. 3, Issue 1
    • DOI: 10.1002/ese3.47

    Li–O2 and Li–S batteries with high energy storage
    journal, January 2012

    • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
    • Nature Materials, Vol. 11, Issue 1, p. 19-29
    • DOI: 10.1038/nmat3191

    Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading
    journal, April 2014

    • Lu, Songtao; Chen, Yan; Wu, Xiaohong
    • Scientific Reports, Vol. 4, Issue 1
    • DOI: 10.1038/srep04629

    Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading
    journal, January 2013

    • Deng, Zhaofeng; Zhang, Zhian; Lai, Yanqing
    • Journal of The Electrochemical Society, Vol. 160, Issue 4
    • DOI: 10.1149/2.026304jes

    Effect of sulfur loading on energy density of lithium sulfur batteries: Energy density of lithium sulfur batteries
    journal, March 2014

    • Kang, Sung-Hwan; Zhao, Xiaohui; Manuel, James
    • physica status solidi (a), Vol. 211, Issue 8
    • DOI: 10.1002/pssa.201330569

    Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
    journal, May 2011

    • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
    • Angewandte Chemie, Vol. 123, Issue 26, p. 6026-6030
    • DOI: 10.1002/ange.201100637

    The effect of sulfur loading on the electrochemical performance of a sulfur–polymer composite cathode coated on aluminium foil
    journal, January 2014

    • Doan, The Nam Long; Gosselink, Denise; Hoang, Tuan K. A.
    • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
    • DOI: 10.1039/c4cp00974f

    Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application
    journal, June 2018


    Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
    journal, October 2011

    • Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.
    • Nano Letters, Vol. 11, Issue 10, p. 4462-4467
    • DOI: 10.1021/nl2027684

    Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries
    journal, October 2013

    • Zhou, Weidong; Yu, Yingchao; Chen, Hao
    • Journal of the American Chemical Society, Vol. 135, Issue 44
    • DOI: 10.1021/ja409508q

    Issues and challenges facing rechargeable lithium batteries
    journal, November 2001

    • Tarascon, J.-M.; Armand, M.
    • Nature, Vol. 414, Issue 6861, p. 359-367
    • DOI: 10.1038/35104644

    A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density
    journal, August 2012


    Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
    journal, January 2010

    • Zhang, B.; Qin, X.; Li, G. R.
    • Energy & Environmental Science, Vol. 3, Issue 10
    • DOI: 10.1039/c002639e

    Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries
    journal, August 2015


    A Lithium-Sulfur Battery with a High Areal Energy Density
    journal, June 2014

    • Kim, Joo-Seong; Hwang, Tae Hoon; Kim, Byung Gon
    • Advanced Functional Materials, Vol. 24, Issue 34
    • DOI: 10.1002/adfm.201400935

    A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
    journal, January 2015


    Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium-Sulfur Batteries
    journal, July 2014

    • Yuan, Zhe; Peng, Hong-Jie; Huang, Jia-Qi
    • Advanced Functional Materials, Vol. 24, Issue 39
    • DOI: 10.1002/adfm.201401501

    Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries
    journal, February 2013

    • Zheng, Guangyuan; Zhang, Qianfan; Cha, Judy J.
    • Nano Letters, Vol. 13, Issue 3, p. 1265-1270
    • DOI: 10.1021/nl304795g

    The Li-Ion Rechargeable Battery: A Perspective
    journal, January 2013

    • Goodenough, John B.; Park, Kyu-Sung
    • Journal of the American Chemical Society, Vol. 135, Issue 4
    • DOI: 10.1021/ja3091438

    Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery
    journal, January 2015

    • Eroglu, Damla; Zavadil, Kevin R.; Gallagher, Kevin G.
    • Journal of The Electrochemical Society, Vol. 162, Issue 6
    • DOI: 10.1149/2.0611506jes

    Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries
    journal, November 2011

    • Elazari, Ran; Salitra, Gregory; Garsuch, Arnd
    • Advanced Materials, Vol. 23, Issue 47, p. 5641-5644
    • DOI: 10.1002/adma.201103274

    Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application
    journal, June 2018