skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model

Abstract

This work presents phase field fracture modeling in heterogeneous porous media. We develop robust and efficient numerical algorithms for pressure-driven and fluid-driven settings in which the focus relies on mesh adaptivity in order to save computational cost for large-scale 3D applications. In the fluid-driven framework, we solve for three unknowns pressure, displacements and phase field that are treated with a fixed-stress iteration in which the pressure and the displacement–phase-field system are decoupled. The latter subsystem is solved with a combined Newton approach employing a primal–dual active set method in order to account for crack irreversibility. Numerical examples for pressurized fractures and fluid filled fracture propagation in heterogeneous porous media demonstrate our developments. Finally in particular, mesh refinement allows us to perform systematic studies with respect to the spatial discretization parameter.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]
  1. Univ. of Texas, Austin, TX (United States)
  2. Austrian Academy of Sciences, Linz (Austria); Technische Univ. München, Garching bei München (Germany)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Frontiers of Subsurface Energy Security (CFSES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1387952
Alternate Identifier(s):
OSTI ID: 1358958
Grant/Contract Number:  
SC0001114; UTA 10-000444; STNO-450291834
Resource Type:
Accepted Manuscript
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Additional Journal Information:
Journal Volume: 305; Journal Issue: C; Related Information: CFSES partners with University of Texas at Austin (lead); Sandia National Laboratory; Journal ID: ISSN 0045-7825
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; nuclear (including radiation effects); carbon sequestration; phase field; fluid filled fracture; adaptive finite elements; porous media; primal-dual active set

Citation Formats

Lee, Sanghyun, Wheeler, Mary F., and Wick, Thomas. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. United States: N. p., 2016. Web. https://doi.org/10.1016/j.cma.2016.02.037.
Lee, Sanghyun, Wheeler, Mary F., & Wick, Thomas. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. United States. https://doi.org/10.1016/j.cma.2016.02.037
Lee, Sanghyun, Wheeler, Mary F., and Wick, Thomas. Wed . "Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model". United States. https://doi.org/10.1016/j.cma.2016.02.037. https://www.osti.gov/servlets/purl/1387952.
@article{osti_1387952,
title = {Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model},
author = {Lee, Sanghyun and Wheeler, Mary F. and Wick, Thomas},
abstractNote = {This work presents phase field fracture modeling in heterogeneous porous media. We develop robust and efficient numerical algorithms for pressure-driven and fluid-driven settings in which the focus relies on mesh adaptivity in order to save computational cost for large-scale 3D applications. In the fluid-driven framework, we solve for three unknowns pressure, displacements and phase field that are treated with a fixed-stress iteration in which the pressure and the displacement–phase-field system are decoupled. The latter subsystem is solved with a combined Newton approach employing a primal–dual active set method in order to account for crack irreversibility. Numerical examples for pressurized fractures and fluid filled fracture propagation in heterogeneous porous media demonstrate our developments. Finally in particular, mesh refinement allows us to perform systematic studies with respect to the spatial discretization parameter.},
doi = {10.1016/j.cma.2016.02.037},
journal = {Computer Methods in Applied Mechanics and Engineering},
number = C,
volume = 305,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Revisiting brittle fracture as an energy minimization problem
journal, August 1998


Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
journal, August 2010

  • Miehe, C.; Welschinger, F.; Hofacker, M.
  • International Journal for Numerical Methods in Engineering, Vol. 83, Issue 10
  • DOI: 10.1002/nme.2861

Cohesive zone finite element-based modeling of hydraulic fractures
journal, October 2009


An implicit level set method for modeling hydraulically driven fractures
journal, June 2008

  • Peirce, Anthony; Detournay, Emmanuel
  • Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issue 33-40
  • DOI: 10.1016/j.cma.2008.01.013

Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: A numerical investigation
journal, March 2007

  • Zhang, Xi; Jeffrey, Robert G.; Thiercelin, Marc
  • Journal of Structural Geology, Vol. 29, Issue 3
  • DOI: 10.1016/j.jsg.2006.09.013

Coupling schemes for modeling hydraulic fracture propagation using the XFEM
journal, January 2013

  • Gordeliy, Elizaveta; Peirce, Anthony
  • Computer Methods in Applied Mechanics and Engineering, Vol. 253
  • DOI: 10.1016/j.cma.2012.08.017

Simulation of non-planar three-dimensional hydraulic fracture propagation: SIMULATION OF NON-PLANAR 3D HYDRAULIC FRACTURE PROPAGATION
journal, June 2014

  • Gupta, P.; Duarte, C. A.
  • International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 38, Issue 13
  • DOI: 10.1002/nag.2305

The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials
journal, April 2015

  • Remij, E. W.; Remmers, J. J. C.; Huyghe, J. M.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 286
  • DOI: 10.1016/j.cma.2014.12.025

Numerical modeling of concrete hydraulic fracturing with extended finite element method
journal, February 2009

  • Ren, QingWen; Dong, YuWen; Yu, TianTang
  • Science in China Series E: Technological Sciences, Vol. 52, Issue 3
  • DOI: 10.1007/s11431-009-0058-8

A peridynamic formulation of pressure driven convective fluid transport in porous media
journal, March 2014


An optimization approach for large scale simulations of discrete fracture network flows
journal, January 2014

  • Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano
  • Journal of Computational Physics, Vol. 256
  • DOI: 10.1016/j.jcp.2013.09.028

Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations
journal, January 2013

  • Kresse, Olga; Weng, Xiaowei; Gu, Hongren
  • Rock Mechanics and Rock Engineering, Vol. 46, Issue 3
  • DOI: 10.1007/s00603-012-0359-2

A Discrete Fracture Network Model for Hydraulically Induced Fractures - Theory, Parametric and Case Studies
conference, April 2013

  • Meyer, Bruce Roman; Bazan, Lucas W.
  • SPE Hydraulic Fracturing Technology Conference
  • DOI: 10.2118/140514-MS

An efficient multi-point flux approximation method for Discrete Fracture–Matrix simulations
journal, May 2012

  • Sandve, T. H.; Berre, I.; Nordbotten, J. M.
  • Journal of Computational Physics, Vol. 231, Issue 9
  • DOI: 10.1016/j.jcp.2012.01.023

Numerical experiments in revisited brittle fracture
journal, April 2000

  • Bourdin, B.; Francfort, G. A.; Marigo, J-J.
  • Journal of the Mechanics and Physics of Solids, Vol. 48, Issue 4
  • DOI: 10.1016/S0022-5096(99)00028-9

A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
journal, November 2010

  • Miehe, Christian; Hofacker, Martina; Welschinger, Fabian
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 45-48
  • DOI: 10.1016/j.cma.2010.04.011

Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture
journal, September 2015

  • Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan
  • Journal of the Mechanics and Physics of Solids, Vol. 82
  • DOI: 10.1016/j.jmps.2015.04.006

A phase-field description of dynamic brittle fracture
journal, April 2012

  • Borden, Michael J.; Verhoosel, Clemens V.; Scott, Michael A.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 217-220
  • DOI: 10.1016/j.cma.2012.01.008

Anisotropic Mesh Adaptation for Crack Detection In Brittle Materials
journal, January 2015

  • Artina, Marco; Fornasier, Massimo; Micheletti, Stefano
  • SIAM Journal on Scientific Computing, Vol. 37, Issue 4
  • DOI: 10.1137/140970495

Damage and fracture evolution in brittle materials by shape optimization methods
journal, June 2011

  • Allaire, Grégoire; Jouve, François; Van Goethem, Nicolas
  • Journal of Computational Physics, Vol. 230, Issue 12
  • DOI: 10.1016/j.jcp.2011.03.024

Phase field approximation of dynamic brittle fracture
journal, June 2014

  • Schlüter, Alexander; Willenbücher, Adrian; Kuhn, Charlotte
  • Computational Mechanics, Vol. 54, Issue 5
  • DOI: 10.1007/s00466-014-1045-x

A review on phase-field models of brittle fracture and a new fast hybrid formulation
journal, December 2014

  • Ambati, Marreddy; Gerasimov, Tymofiy; De Lorenzis, Laura
  • Computational Mechanics, Vol. 55, Issue 2
  • DOI: 10.1007/s00466-014-1109-y

A quasi-static phase-field approach to pressurized fractures
journal, April 2015


An augmented-Lagrangian method for the phase-field approach for pressurized fractures
journal, April 2014

  • Wheeler, M. F.; Wick, T.; Wollner, W.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 271
  • DOI: 10.1016/j.cma.2013.12.005

A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach
journal, June 2015

  • Heister, Timo; Wheeler, Mary F.; Wick, Thomas
  • Computer Methods in Applied Mechanics and Engineering, Vol. 290
  • DOI: 10.1016/j.cma.2015.03.009

The Primal-Dual Active Set Strategy as a Semismooth Newton Method
journal, January 2002


A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium
journal, January 2015

  • Mikelić, Andro; Wheeler, Mary F.; Wick, Thomas
  • Multiscale Modeling & Simulation, Vol. 13, Issue 1
  • DOI: 10.1137/140967118

Approximation of functional depending on jumps by elliptic functional via t-convergence
journal, December 1990

  • Ambrosio, Luigi; Tortorelli, Vincenzo Maria
  • Communications on Pure and Applied Mathematics, Vol. 43, Issue 8
  • DOI: 10.1002/cpa.3160430805

Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments
journal, August 2009

  • Amor, Hanen; Marigo, Jean-Jacques; Maurini, Corrado
  • Journal of the Mechanics and Physics of Solids, Vol. 57, Issue 8
  • DOI: 10.1016/j.jmps.2009.04.011

A phase-field model for cohesive fracture: A PHASE-FIELD MODEL FOR COHESIVE FRACTURE
journal, July 2013

  • Verhoosel, Clemens V.; de Borst, René
  • International Journal for Numerical Methods in Engineering, Vol. 96, Issue 1
  • DOI: 10.1002/nme.4553

Numerical convergence study of iterative coupling for coupled flow and geomechanics
journal, January 2014


A Variational Approach to the Numerical Simulation of Hydraulic Fracturing
conference, April 2013

  • Bourdin, Blaise; Chukwudozie, Chukwudi P.; Yoshioka, Keita
  • SPE Annual Technical Conference and Exhibition
  • DOI: 10.2118/159154-MS

Convergence of iterative coupling for coupled flow and geomechanics
journal, October 2012


    Works referencing / citing this record:

    Phase Field Model of Hydraulic Fracturing in Poroelastic Media: Fracture Propagation, Arrest, and Branching Under Fluid Injection and Extraction
    journal, March 2018

    • Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis
    • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 3
    • DOI: 10.1002/2017jb014740

    Fracture Propagation in Heterogeneous Porous Media: Pore-Scale Implications of Mineral Dissolution
    journal, April 2019


    Flow and transport in fractured poroelastic media
    journal, January 2019

    • Ambartsumyan, Ilona; Khattatov, Eldar; Nguyen, Truong
    • GEM - International Journal on Geomathematics, Vol. 10, Issue 1
    • DOI: 10.1007/s13137-019-0119-5

    Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium
    journal, January 2019

    • Mikelić, A.; Wheeler, M. F.; Wick, T.
    • GEM - International Journal on Geomathematics, Vol. 10, Issue 1
    • DOI: 10.1007/s13137-019-0113-y

    Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing
    journal, February 2019

    • Yoshioka, Keita; Parisio, Francesco; Naumov, Dmitri
    • GEM - International Journal on Geomathematics, Vol. 10, Issue 1
    • DOI: 10.1007/s13137-019-0126-6

    Liquid CO2 Fracturing: Effect of Fluid Permeation on the Breakdown Pressure and Cracking Behavior
    journal, July 2018

    • Ha, Seong Jun; Choo, Jinhyun; Yun, Tae Sup
    • Rock Mechanics and Rock Engineering, Vol. 51, Issue 11
    • DOI: 10.1007/s00603-018-1542-x

    A robust mesh optimisation method for multiphase porous media flows
    journal, July 2018


    A hybrid adaptive finite element phase‐field method for quasi‐static and dynamic brittle fracture
    journal, August 2019

    • Tian, Fucheng; Tang, Xiaoliang; Xu, Tingyu
    • International Journal for Numerical Methods in Engineering, Vol. 120, Issue 9
    • DOI: 10.1002/nme.6172

    Mesh-Based and Meshfree Reduced Order Phase-Field Models for Brittle Fracture: One Dimensional Problems
    journal, June 2019

    • Nguyen, Ngoc-Hien; Nguyen, Vinh Phu; Wu, Jian-Ying
    • Materials, Vol. 12, Issue 11
    • DOI: 10.3390/ma12111858

    Improved algorithms for generalized finite element simulations of three‐dimensional hydraulic fracture propagation
    journal, October 2019

    • Shauer, Nathan; Duarte, Carlos Armando
    • International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 43, Issue 18
    • DOI: 10.1002/nag.2977

    The effect of stress boundary conditions on fluid‐driven fracture propagation in porous media using a phase‐field modeling approach
    journal, January 2019

    • Shiozawa, Sogo; Lee, Sanghyun; Wheeler, Mary F.
    • International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 43, Issue 6
    • DOI: 10.1002/nag.2899

    A phase‐field method for modeling cracks with frictional contact
    journal, October 2019

    • Fei, Fan; Choo, Jinhyun
    • International Journal for Numerical Methods in Engineering, Vol. 121, Issue 4
    • DOI: 10.1002/nme.6242

    A convergence study of monolithic simulations of flow and deformation in fractured poroelastic media
    journal, October 2019

    • Hageman, Tim; Borst, René
    • International Journal for Numerical Methods in Engineering, Vol. 121, Issue 3
    • DOI: 10.1002/nme.6213

    On the undrained and drained hydraulic fracture splits: Undrained and Drained Hydraulic Fracture Splits
    journal, March 2019

    • Parchei Esfahani, Matin; Gracie, Robert
    • International Journal for Numerical Methods in Engineering, Vol. 118, Issue 12
    • DOI: 10.1002/nme.6036

    An adaptive material point method coupled with a phase‐field fracture model for brittle materials
    journal, July 2019

    • Cheon, Young‐Jo; Kim, Hyun‐Gyu
    • International Journal for Numerical Methods in Engineering, Vol. 120, Issue 8
    • DOI: 10.1002/nme.6167

    A Fully Three Dimensional Semianalytical Model for Shale Gas Reservoirs with Hydraulic Fractures
    journal, February 2018