skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cutting the cost of carbon capture: a case for carbon capture and utilization

Abstract

A significant part of the cost for carbon capture and storage (CCS) is related to the compression of captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of carbon capture and utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final CO2 purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with the reported prices for CO2 and published costs for CCS.

Authors:
 [1];  [2];  [1];  [3]
  1. Ghent Univ., Zwijnaarde (Belgium)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States); Ecole Polytechnique Federale Lausanne (Switzlerland)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1387672
Grant/Contract Number:  
SC0001015
Resource Type:
Accepted Manuscript
Journal Name:
Faraday Discussions
Additional Journal Information:
Journal Volume: 192; Related Information: CGS partners with University of California, Berkeley; University of California, Davis; Lawrence Berkeley National Laboratory; University of Minnesota; National Energy Technology Laboratory; Texas A&M University; Journal ID: ISSN 1359-6640
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES; membrane; carbon capture; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Joos, Lennart, Huck, Johanna M., Van Speybroeck, Veronique, and Smit, Berend. Cutting the cost of carbon capture: a case for carbon capture and utilization. United States: N. p., 2016. Web. doi:10.1039/C6FD00031B.
Joos, Lennart, Huck, Johanna M., Van Speybroeck, Veronique, & Smit, Berend. Cutting the cost of carbon capture: a case for carbon capture and utilization. United States. doi:10.1039/C6FD00031B.
Joos, Lennart, Huck, Johanna M., Van Speybroeck, Veronique, and Smit, Berend. Fri . "Cutting the cost of carbon capture: a case for carbon capture and utilization". United States. doi:10.1039/C6FD00031B. https://www.osti.gov/servlets/purl/1387672.
@article{osti_1387672,
title = {Cutting the cost of carbon capture: a case for carbon capture and utilization},
author = {Joos, Lennart and Huck, Johanna M. and Van Speybroeck, Veronique and Smit, Berend},
abstractNote = {A significant part of the cost for carbon capture and storage (CCS) is related to the compression of captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of carbon capture and utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final CO2 purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with the reported prices for CO2 and published costs for CCS.},
doi = {10.1039/C6FD00031B},
journal = {Faraday Discussions},
number = ,
volume = 192,
place = {United States},
year = {2016},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

Accelerated curing of cementitious systems by carbon dioxide
journal, September 1972


Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies
journal, October 2011

  • Bhown, Abhoyjit S.; Freeman, Brice C.
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es104291d

What Are the Best Materials To Separate a Xenon/Krypton Mixture?
journal, June 2015


Thermodynamics of mixed-gas adsorption
journal, January 1965


Carbon capture in metal–organic frameworks—a comparative study
journal, January 2011

  • Simmons, Jason M.; Wu, Hui; Zhou, Wei
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c0ee00700e

The materials genome in action: identifying the performance limits for methane storage
journal, January 2015

  • Simon, Cory M.; Kim, Jihan; Gomez-Gualdron, Diego A.
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE03515A

Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO 2 Capture
journal, August 2014

  • Fernandez, Michael; Boyd, Peter G.; Daff, Thomas D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz501331m

Biodiesel from algae: challenges and prospects
journal, June 2010


Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities
journal, July 2011


The thermodynamics of direct air capture of carbon dioxide
journal, February 2013


Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite-Type Zeolitic Imidazolate Frameworks
journal, July 2014

  • Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Gándara, Felipe
  • Angewandte Chemie International Edition, Vol. 53, Issue 40
  • DOI: 10.1002/anie.201403980

Carbon Dioxide Fumigation for Controlling Bed Bugs
journal, September 2012

  • Wang, Changlu; Lü, Lihua; Xu, Ming
  • Journal of Medical Entomology, Vol. 49, Issue 5
  • DOI: 10.1603/ME12037

CO2 capture by solid adsorbents and their applications: current status and new trends
journal, January 2011

  • Wang, Qiang; Luo, Jizhong; Zhong, Ziyi
  • Energy Environ. Sci., Vol. 4, Issue 1
  • DOI: 10.1039/C0EE00064G

Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Cost-effective CO2 capture based on in silico screening of zeolites and process optimization
journal, January 2013

  • Hasan, M. M. Faruque; First, Eric L.; Floudas, Christodoulos A.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 40
  • DOI: 10.1039/c3cp53627k

Aqueous piperazine as the new standard for CO2 capture technology
journal, July 2011

  • Rochelle, Gary; Chen, Eric; Freeman, Stephanie
  • Chemical Engineering Journal, Vol. 171, Issue 3
  • DOI: 10.1016/j.cej.2011.02.011

Gas Adsorption Study on Mesoporous Metal−Organic Framework UMCM-1
journal, March 2010

  • Mu, Bin; Schoenecker, Paul M.; Walton, Krista S.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 14
  • DOI: 10.1021/jp906417z

Understanding CO 2 Adsorption in CuBTC MOF: Comparing Combined DFT–ab Initio Calculations with Microcalorimetry Experiments
journal, August 2011

  • Grajciar, Lukáš; Wiersum, Andrew D.; Llewellyn, Philip L.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 36
  • DOI: 10.1021/jp206002d

Experimental and Computational Study of Functionality Impact on Sodalite–Zeolitic Imidazolate Frameworks for CO 2 Separation
journal, August 2011

  • Amrouche, Hedi; Aguado, Sonia; Pérez-Pellitero, Javier
  • The Journal of Physical Chemistry C, Vol. 115, Issue 33
  • DOI: 10.1021/jp202804g

Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO 2 Sequestration
journal, January 2003

  • Ko, Daeho; Siriwardane, Ranjani; Biegler, Lorenz T.
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 2
  • DOI: 10.1021/ie0204540

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

CO 2 shielding gas effects in laser welding mild steel
journal, June 1994

  • Abbott, D. H.; Albright, C. E.
  • Journal of Laser Applications, Vol. 6, Issue 2
  • DOI: 10.2351/1.4745339

Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture
journal, January 2013

  • Bae, Tae-Hyun; Hudson, Matthew R.; Mason, Jarad A.
  • Energy Environ. Sci., Vol. 6, Issue 1
  • DOI: 10.1039/C2EE23337A

Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal−Organic Framework and 13X Zeolitic Molecular Sieve
journal, September 2010

  • Aprea, Paolo; Caputo, Domenico; Gargiulo, Nicola
  • Journal of Chemical & Engineering Data, Vol. 55, Issue 9
  • DOI: 10.1021/je1002225

A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture
journal, February 2011


Metal−Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture
journal, April 2011

  • Herm, Zoey R.; Swisher, Joseph A.; Smit, Berend
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja111411q

Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite
journal, January 2006

  • Mérel, J.; Clausse, M.; Meunier, F.
  • Environmental Progress, Vol. 25, Issue 4
  • DOI: 10.1002/ep.10166

Industrial Outlook on Zeolites and Metal Organic Frameworks
journal, January 2012


Advances in theory and their application within the field of zeolite chemistry
journal, January 2015

  • Van Speybroeck, Veronique; Hemelsoet, Karen; Joos, Lennart
  • Chemical Society Reviews, Vol. 44, Issue 20
  • DOI: 10.1039/C5CS00029G

Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture
journal, October 2011

  • Bae, Youn-Sang; Snurr, Randall Q.
  • Angewandte Chemie International Edition, Vol. 50, Issue 49
  • DOI: 10.1002/anie.201101891

Amine Scrubbing for CO2 Capture
journal, September 2009


Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie International Edition, Vol. 54, Issue 48
  • DOI: 10.1002/anie.201506952

Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties
journal, March 2009

  • Banerjee, Rahul; Furukawa, Hiroyasu; Britt, David
  • Journal of the American Chemical Society, Vol. 131, Issue 11, p. 3875-3877
  • DOI: 10.1021/ja809459e

Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic Ligand
journal, August 2008

  • Dietzel, Pascal D. C.; Blom, Richard; Fjellvåg, Helmer
  • European Journal of Inorganic Chemistry, Vol. 2008, Issue 23
  • DOI: 10.1002/ejic.200701284

Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption
journal, June 2010

  • Yoon, Ji Woong; Seo, You-Kyong; Hwang, Young Kyu
  • Angewandte Chemie International Edition, Vol. 49, Issue 34
  • DOI: 10.1002/anie.201001230

Molecular Simulation Study of the Competitive Adsorption of H 2 O and CO 2 in Zeolite 13X
journal, December 2013

  • Joos, Lennart; Swisher, Joseph A.; Smit, Berend
  • Langmuir, Vol. 29, Issue 51
  • DOI: 10.1021/la403824g

Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption
journal, February 1995

  • Chue, K. T.; Kim, J. N.; Yoo, Y. J.
  • Industrial & Engineering Chemistry Research, Vol. 34, Issue 2
  • DOI: 10.1021/ie00041a020

Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach
journal, December 2009

  • Yazaydın, A. Özgür; Snurr, Randall Q.; Park, Tae-Hong
  • Journal of the American Chemical Society, Vol. 131, Issue 51
  • DOI: 10.1021/ja9057234

Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources
journal, September 2009

  • Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.
  • ChemSusChem, Vol. 2, Issue 9, p. 796-854
  • DOI: 10.1002/cssc.200900036

Building multiple adsorption sites in porous polymer networks for carbon capture applications
journal, January 2013

  • Lu, Weigang; Verdegaal, Wolfgang M.; Yu, Jiamei
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42226g

CO 2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X)
journal, May 2009

  • Liang, Zhijian; Marshall, Marc; Chaffee, Alan L.
  • Energy & Fuels, Vol. 23, Issue 5
  • DOI: 10.1021/ef800938e

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Computational Discovery of New Zeolite-Like Materials
journal, October 2009

  • Deem, Michael W.; Pophale, Ramdas; Cheeseman, Phillip A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 51
  • DOI: 10.1021/jp906984z

Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules
journal, April 2013

  • Martin, Richard L.; Lin, Li-Chiang; Jariwala, Kuldeep
  • The Journal of Physical Chemistry C, Vol. 117, Issue 23
  • DOI: 10.1021/jp401920y

Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity
journal, April 2012


Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011

  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs
journal, May 2008

  • Wang, Bo; Côté, Adrien P.; Furukawa, Hiroyasu
  • Nature, Vol. 453, Issue 7192, p. 207-211
  • DOI: 10.1038/nature06900

Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study
journal, December 2011

  • Huang, Hongliang; Zhang, Wenjuan; Liu, Dahuan
  • Chemical Engineering Science, Vol. 66, Issue 23
  • DOI: 10.1016/j.ces.2011.09.009

Entropy-Driven Chemisorption of NO x on Phosphotungstic Acid
journal, September 2012

  • Heylen, Steven; Joos, Lennart; Parac-Vogt, Tatjana N.
  • Angewandte Chemie International Edition, Vol. 51, Issue 44
  • DOI: 10.1002/anie.201205636

The Potential Applications of Nanoporous Materials for the Adsorption, Separation, and Catalytic Conversion of Carbon Dioxide
journal, March 2014

  • Sneddon, Gregor; Greenaway, Alex; Yiu, Humphrey H. P.
  • Advanced Energy Materials, Vol. 4, Issue 10
  • DOI: 10.1002/aenm.201301873

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure
journal, November 2011

  • Lu, Weigang; Yuan, Daqiang; Sculley, Julian
  • Journal of the American Chemical Society, Vol. 133, Issue 45, p. 18126-18129
  • DOI: 10.1021/ja2087773

Synthesis of new zeolite structures
journal, January 2015

  • Li, Jiyang; Corma, Avelino; Yu, Jihong
  • Chemical Society Reviews, Vol. 44, Issue 20
  • DOI: 10.1039/C5CS00023H

Social cost of carbon: Domestic duty
journal, February 2016


Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere
journal, January 1994


Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation
journal, February 2013

  • Nugent, Patrick; Belmabkhout, Youssef; Burd, Stephen D.
  • Nature, Vol. 495, Issue 7439, p. 80-84
  • DOI: 10.1038/nature11893

Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
journal, November 2010

  • Lu, Weigang; Yuan, Daqiang; Zhao, Dan
  • Chemistry of Materials, Vol. 22, Issue 21, p. 5964-5972
  • DOI: 10.1021/cm1021068

Large-Scale Screening of Zeolite Structures for CO 2 Membrane Separations
journal, May 2013

  • Kim, Jihan; Abouelnasr, Mahmoud; Lin, Li-Chiang
  • Journal of the American Chemical Society, Vol. 135, Issue 20
  • DOI: 10.1021/ja400267g

Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide
journal, January 2009

  • Dietzel, Pascal D. C.; Besikiotis, Vasileios; Blom, Richard
  • Journal of Materials Chemistry, Vol. 19, Issue 39, p. 7362-7370
  • DOI: 10.1039/b911242a

Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture
journal, June 2014

  • Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5228

Carbon capture turned upside down: high-temperature adsorption & low-temperature desorption (HALD)
journal, January 2015

  • Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01690H

Evaluating different classes of porous materials for carbon capture
journal, January 2014

  • Huck, Johanna M.; Lin, Li-Chiang; Berger, Adam H.
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE02636E

Progress in adsorption-based CO 2 capture by metal–organic frameworks
journal, January 2012

  • Liu, Jian; Thallapally, Praveen K.; McGrail, B. Peter
  • Chem. Soc. Rev., Vol. 41, Issue 6
  • DOI: 10.1039/C1CS15221A

Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas
journal, June 2012

  • Lu, Weigang; Sculley, Julian P.; Yuan, Daqiang
  • Angewandte Chemie International Edition, Vol. 51, Issue 30, p. 7480-7484
  • DOI: 10.1002/anie.201202176

Carbon dioxide capture with concentrated, aqueous piperazine
journal, March 2010

  • Freeman, Stephanie A.; Dugas, Ross; Van Wagener, David H.
  • International Journal of Greenhouse Gas Control, Vol. 4, Issue 2
  • DOI: 10.1016/j.ijggc.2009.10.008

    Works referencing / citing this record:

    ZIF-8 as a Catalyst in Ethylene Oxide and Propylene Oxide Reaction with CO2 to Cyclic Organic Carbonates
    journal, July 2019


    ZIF-8 as a Catalyst in Ethylene Oxide and Propylene Oxide Reaction with CO2 to Cyclic Organic Carbonates
    journal, July 2019