DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure of the high voltage phase of layered P2-Na2/3-z[Mn 1/2Fe 1/2 ]O2 and the positive effect of Ni substitution on its stability

Abstract

A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mössbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.67[NiyMn0.5+yFe0.5-2y]O2 (y = 0, 0.10, 0.15). When phase transitions are avoided, the optimal cathode material – P2-Na0.67Fe0.2Mn0.65Ni0.15O2 - delivers 25% more energy than the unsubstituted material, sustaining high specific energy (350 Wh kg-1) at moderate rates and maintains 80% of the original energy density after 150 cycles - a significant improvement in performance vs. the unsubstituted analogue. The crystal structure of the high voltage phase is solved for the first time by X-ray PDF analysis of P2-Na0.67-zFe0.5Mn0.5O2 (where z~0.5), revealing that migration of the transition metals – particularly Fe3+- into tetrahedral sites in the interlayer space occurs at high potential. This results in new short range order between two adjacent layers. Although the transition metal migration is reversible as proven by electrochemical performance, it induces a large disfavourable cell polarization. The deleterious high voltage transition is mitigated by substitution of Fe3+ by Mn4+/Ni2+, giving rise to better cycling performance. Moreover, as demonstrated by 57Fe Mössbauer spectroscopy, the much lower ratio of Fe4+O6 to Fe3+O6 observed systematicallymore » across the range of Ni content – compared to the values expected from a purely ionic model – suggests redox activity involves the O-2p orbitals owing to their overlap with the transition metal-3d orbitals.« less

Authors:
 [1];  [1];  [2];  [2];  [1]
  1. Univ. of Waterloo, ON (Canada). Waterloo Inst. for Nanotechnology
  2. California Institute of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research in Extreme Environments (EFree)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1386015
Grant/Contract Number:  
SC0001057
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 8; Related Information: EFree partners with Carnegie Institution of Washington (lead); California Institute of Technology; Colorado School of Mines; Cornell University; Lehigh University; Pennsylvania State University; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (heterogeneous); solar (photovoltaic); phonons; thermoelectric; energy storage (including batteries and capacitors); hydrogen and fuel cells; superconductivity; charge transport; mesostructured materials; materials and chemistry by design; synthesis (novel materials)

Citation Formats

Talaie, Elahe, Duffort, Victor, Smith, Hillary L., Fultz, Brent, and Nazar, Linda F. Structure of the high voltage phase of layered P2-Na2/3-z[Mn 1/2Fe 1/2 ]O2 and the positive effect of Ni substitution on its stability. United States: N. p., 2015. Web. doi:10.1039/c5ee01365h.
Talaie, Elahe, Duffort, Victor, Smith, Hillary L., Fultz, Brent, & Nazar, Linda F. Structure of the high voltage phase of layered P2-Na2/3-z[Mn 1/2Fe 1/2 ]O2 and the positive effect of Ni substitution on its stability. United States. https://doi.org/10.1039/c5ee01365h
Talaie, Elahe, Duffort, Victor, Smith, Hillary L., Fultz, Brent, and Nazar, Linda F. Fri . "Structure of the high voltage phase of layered P2-Na2/3-z[Mn 1/2Fe 1/2 ]O2 and the positive effect of Ni substitution on its stability". United States. https://doi.org/10.1039/c5ee01365h. https://www.osti.gov/servlets/purl/1386015.
@article{osti_1386015,
title = {Structure of the high voltage phase of layered P2-Na2/3-z[Mn 1/2Fe 1/2 ]O2 and the positive effect of Ni substitution on its stability},
author = {Talaie, Elahe and Duffort, Victor and Smith, Hillary L. and Fultz, Brent and Nazar, Linda F.},
abstractNote = {A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mössbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.67[NiyMn0.5+yFe0.5-2y]O2 (y = 0, 0.10, 0.15). When phase transitions are avoided, the optimal cathode material – P2-Na0.67Fe0.2Mn0.65Ni0.15O2 - delivers 25% more energy than the unsubstituted material, sustaining high specific energy (350 Wh kg-1) at moderate rates and maintains 80% of the original energy density after 150 cycles - a significant improvement in performance vs. the unsubstituted analogue. The crystal structure of the high voltage phase is solved for the first time by X-ray PDF analysis of P2-Na0.67-zFe0.5Mn0.5O2 (where z~0.5), revealing that migration of the transition metals – particularly Fe3+- into tetrahedral sites in the interlayer space occurs at high potential. This results in new short range order between two adjacent layers. Although the transition metal migration is reversible as proven by electrochemical performance, it induces a large disfavourable cell polarization. The deleterious high voltage transition is mitigated by substitution of Fe3+ by Mn4+/Ni2+, giving rise to better cycling performance. Moreover, as demonstrated by 57Fe Mössbauer spectroscopy, the much lower ratio of Fe4+O6 to Fe3+O6 observed systematically across the range of Ni content – compared to the values expected from a purely ionic model – suggests redox activity involves the O-2p orbitals owing to their overlap with the transition metal-3d orbitals.},
doi = {10.1039/c5ee01365h},
journal = {Energy & Environmental Science},
number = 8,
volume = 8,
place = {United States},
year = {Fri Jul 03 00:00:00 EDT 2015},
month = {Fri Jul 03 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 278 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrospun P2-type Na 2/3 (Fe 1/2 Mn 1/2 )O 2 Hierarchical Nanofibers as Cathode Material for Sodium-Ion Batteries
journal, June 2014

  • Kalluri, Sujith; Seng, Kuok Hau; Pang, Wei Kong
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am502343s

Sodium deintercalation from sodium iron oxide
journal, June 1994


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy
journal, January 2013

  • Zhou, Yong-Ning; Ding, Jing-Jing; Nam, Kyung-Wan
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta12282d

PDFgetX3 : a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions
journal, March 2013


Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1)
journal, February 1971

  • Parant, Jean-Paul; Olazcuaga, Roger; Devalette, Michel
  • Journal of Solid State Chemistry, Vol. 3, Issue 1
  • DOI: 10.1016/0022-4596(71)90001-6

Na 0.67 Mn 1−x Mg x O 2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries
journal, January 2014

  • Billaud, Juliette; Singh, Gurpreet; Armstrong, A. Robert
  • Energy Environ. Sci., Vol. 7, Issue 4
  • DOI: 10.1039/C4EE00465E

An advanced cathode for Na-ion batteries with high rate and excellent structural stability
journal, January 2013

  • Lee, Dae Hoe; Xu, Jing; Meng, Ying Shirley
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44467d

A study of the Na x TiO2 system by electrochemical deintercalation
journal, January 1983

  • Maazaz, A.; Delmas, C.; Hagenmuller, P.
  • Journal of Inclusion Phenomena, Vol. 1, Issue 1
  • DOI: 10.1007/BF00658014

Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2
journal, March 2010


New Insight into Structural Evolution in Layered NaCrO 2 during Electrochemical Sodium Extraction
journal, December 2014

  • Kubota, Kei; Ikeuchi, Issei; Nakayama, Tetsuri
  • The Journal of Physical Chemistry C, Vol. 119, Issue 1
  • DOI: 10.1021/jp5105888

Structure and Electrochemistry of Na x Fe x Mn 1-x O 2 (1.0 ≤ x ≤ 0.5) for Na-Ion Battery Positive Electrodes
journal, December 2012

  • Thorne, J. S.; Dunlap, R. A.; Obrovac, M. N.
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.058302jes

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
journal, January 2015

  • Han, Man Huon; Gonzalo, Elena; Singh, Gurpreet
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03192J

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials
journal, November 2012

  • Guignard, Marie; Didier, Christophe; Darriet, Jacques
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3478

Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO 2 –NaNiO 2 Solid Solution for Enhanced Electrochemical Properties
journal, January 2014

  • Wang, Xianfen; Liu, Guandong; Iwao, Tatsumi
  • The Journal of Physical Chemistry C, Vol. 118, Issue 6
  • DOI: 10.1021/jp411382r

Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2
journal, April 2012

  • Sathiya, M.; Hemalatha, K.; Ramesha, K.
  • Chemistry of Materials, Vol. 24, Issue 10
  • DOI: 10.1021/cm300466b

Layered P2-Na 0.66 Fe 0.5 Mn 0.5 O 2 Cathode Material for Rechargeable Sodium-Ion Batteries
journal, August 2013


Structural classification and properties of the layered oxides
journal, January 1980


Electronic structure of SrFe 4 + O 3 and related Fe perovskite oxides
journal, January 1992


Structure and Electrochemistry of Na x Fe x Ti 1-x O 2 (1.0 ≥ x ≥ 0.75) for Na-Ion Battery Positive Electrodes
journal, January 2014

  • Thorne, J. S.; Chowdhury, S.; Dunlap, R. A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0291412jes

High Performance Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O 2 Cathode for Sodium-Ion Batteries
journal, June 2014

  • Hasa, Ivana; Buchholz, Daniel; Passerini, Stefano
  • Advanced Energy Materials, Vol. 4, Issue 15
  • DOI: 10.1002/aenm.201400083

Electrochemical investigation of the P2–NaxCoO2 phase diagram
journal, December 2010

  • Berthelot, R.; Carlier, D.; Delmas, C.
  • Nature Materials, Vol. 10, Issue 1
  • DOI: 10.1038/nmat2920

Crystal Structure and Transport Properties of .GAMMA.-NaxCoO2 (x = 0.67-0.75) [熱電変換材料  γ‐NaxCoO2(x=0.67〜0.75)の結晶構造と輸送特性]
journal, January 2003

  • Ono, Yasuhiro; Kato, Nobuhiko; Ishii, Yoshinobu
  • Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 50, Issue 6
  • DOI: 10.2497/jjspm.50.469

β-NaMnO 2 : A High-Performance Cathode for Sodium-Ion Batteries
journal, November 2014

  • Billaud, Juliette; Clément, Raphaële J.; Armstrong, A. Robert
  • Journal of the American Chemical Society, Vol. 136, Issue 49
  • DOI: 10.1021/ja509704t

NaxVO2 as possible electrode for Na-ion batteries
journal, September 2011


Electrochemical intercalation of sodium in NaxCoO2 bronzes
journal, August 1981


Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]
journal, January 2001

  • Lu, Zhonghua; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1407247

New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries
journal, May 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kajiyama, Masataka
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201301453

Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides
journal, September 2014

  • Lei, Yuechuan; Li, Xin; Liu, Lei
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm5021788

Uptake of CO 2 in Layered P2-Na 0.67 Mn 0.5 Fe 0.5 O 2 : Insertion of Carbonate Anions
journal, March 2015


P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery
journal, January 2014


P2-Na x Mn 1/2 Fe 1/2 O 2 Phase Used as Positive Electrode in Na Batteries: Structural Changes Induced by the Electrochemical (De)intercalation Process
journal, September 2014

  • Mortemard de Boisse, Benoit; Carlier, Dany; Guignard, Marie
  • Inorganic Chemistry, Vol. 53, Issue 20
  • DOI: 10.1021/ic5017802

Synthesis and characterization of pure P2- and O3-Na 2/3 Fe 2/3 Mn 1/3 O 2 as cathode materials for Na ion batteries
journal, January 2014

  • Gonzalo, E.; Han, M. H.; López del Amo, J. M.
  • J. Mater. Chem. A, Vol. 2, Issue 43
  • DOI: 10.1039/C4TA03991B

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Electronic structure of 3 d -transition-metal compounds by analysis of the 2 p core-level photoemission spectra
journal, August 1992


Structural and Electrochemical Characterizations of P2 and New O3-Na x Mn 1-y Fe y O 2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries
journal, January 2013

  • Mortemard de Boisse, B.; Carlier, D.; Guignard, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 4
  • DOI: 10.1149/2.032304jes

Charge disproportionation in CaFeO3 studied with the Mössbauer effect
journal, September 1977


Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries
journal, August 2014


Origin of additional capacities in metal oxide lithium-ion battery electrodes
journal, November 2013

  • Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3784

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Electrochemical intercalation and deintercalation of NaxMnO2 bronzes
journal, May 1985


Electrochemical and Thermal Properties of α-NaFeO 2 Cathode for Na-Ion Batteries
journal, January 2013

  • Zhao, Jie; Zhao, Liwei; Dimov, Nikolay
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.007305jes

Whole powder pattern decomposition methods and applications: A retrospection
journal, December 2005


Layered Transition Metal Oxides as Cathodes for Sodium Secondary Battery
journal, June 2006

  • Okada, Shigeto; Takahashi, Yusuke; Kiyabu, Toshiyasu
  • ECS Meeting Abstracts, Vol. MA2006-02, Issue 4
  • DOI: 10.1149/MA2006-02/4/201

Works referencing / citing this record:

Electrochemistry and Solid‐State Chemistry of NaMeO 2 (Me = 3d Transition Metals)
journal, June 2018

  • Kubota, Kei; Kumakura, Shinichi; Yoda, Yusuke
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703415

Construction of 3D pomegranate-like Na 3 V 2 (PO 4 ) 3 /conducting carbon composites for high-power sodium-ion batteries
journal, January 2017

  • Wang, Enhui; Xiang, Wei; Rajagopalan, Ranjusha
  • Journal of Materials Chemistry A, Vol. 5, Issue 20
  • DOI: 10.1039/c7ta00153c

Operando powder X-ray diffraction study of P 2-Na x Ni 0.3 Mn 0.7 O 2 cathode material during electrochemical cycling
journal, August 2018

  • Kjeldgaard, Solveig; Birgisson, Steinar; Kielland, Anette Gert
  • Journal of Applied Crystallography, Vol. 51, Issue 5
  • DOI: 10.1107/s1600576718010531

Sodium and Sodium-Ion Batteries: 50 Years of Research
journal, February 2018


A Study of Cu Doping Effects in P2‐Na 0.75 Mn 0.6 Fe 0.2 (Cu x Ni 0.2‐ x )O 2 Layered Cathodes for Sodium‐Ion Batteries
journal, April 2020


Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries
journal, January 2020


Recent Progress in Electrode Materials for Sodium-Ion Batteries
journal, July 2016

  • Kim, Hyungsub; Kim, Haegyeom; Ding, Zhang
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600943

Layered P2-Type K 0.65 Fe 0.5 Mn 0.5 O 2 Microspheres as Superior Cathode for High-Energy Potassium-Ion Batteries
journal, May 2018

  • Deng, Tao; Fan, Xiulin; Chen, Ji
  • Advanced Functional Materials, Vol. 28, Issue 28
  • DOI: 10.1002/adfm.201800219

Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage
journal, July 2017

  • Li, Wei-Jie; Han, Chao; Wang, Wanlin
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700274

Von Lithium- zu Natriumionenbatterien: Vorteile, Herausforderungen und Überraschendes
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie, Vol. 130, Issue 1
  • DOI: 10.1002/ange.201703772

High-Performance P2-Type Na 2/3 (Mn 1/2 Fe 1/4 Co 1/4 )O 2 Cathode Material with Superior Rate Capability for Na-Ion Batteries
journal, September 2015


Capturing Reversible Cation Migration in Layered Structure Materials for Na‐Ion Batteries
journal, April 2019

  • Zhang, Xiaoyu; Guo, Shaohua; Liu, Pan
  • Advanced Energy Materials, Vol. 9, Issue 20
  • DOI: 10.1002/aenm.201900189

P2-type Na 2/3 Ni 1/3 Mn 2/3 O 2 as a cathode material with high-rate and long-life for sodium ion storage
journal, January 2019

  • Liu, Qiannan; Hu, Zhe; Chen, Mingzhe
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c8ta11927a

Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016


Investigation of K modified P2 Na 0.7 Mn 0.8 Mg 0.2 O 2 as a cathode material for sodium-ion batteries
journal, January 2019

  • Sehrawat, Divya; Cheong, Soshan; Rawal, Aditya
  • CrystEngComm, Vol. 21, Issue 1
  • DOI: 10.1039/c8ce01532e

Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices?
journal, April 2017


Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium‐Ion Batteries
journal, February 2019


Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016

  • Wang, Peng-Fei; You, Ya; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201602202

Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries
journal, January 2019


Electrode Engineering by Atomic Layer Deposition for Sodium‐Ion Batteries: From Traditional to Advanced Batteries
journal, December 2019


Ultrafine Prussian Blue as a High‐Rate and Long‐Life Sodium‐Ion Battery Cathode
journal, May 2019


A First-Principles and Experimental Investigation of Nickel Solubility into the P2 Na x CoO 2 Sodium-Ion Cathode
journal, August 2018

  • Bianchini, Matteo; Wang, Jingyang; Clément, Raphaële
  • Advanced Energy Materials, Vol. 8, Issue 26
  • DOI: 10.1002/aenm.201801446

In operando observation of sodium ion diffusion in a layered sodium transition metal oxide cathode material, P2 Na x Co 0.7 Mn 0.3 O 2
journal, January 2017

  • Birgisson, Steinar; Shen, Yanbin; Iversen, Bo B.
  • Chemical Communications, Vol. 53, Issue 6
  • DOI: 10.1039/c6cc09415e

Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive
journal, January 2016

  • Dugas, R.; Ponrouch, A.; Gachot, G.
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0981610jes

From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201703772

The Interaction between Cu and Fe in P2-Type Na x TMO 2 Cathodes for Advanced Battery Performance
journal, January 2018

  • Zhang, Yangning; Kim, Sooran; Feng, Guangyuang
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0171807jes

Controlled Oxygen Redox for Excellent Power Capability in Layered Sodium‐Based Compounds
journal, July 2019

  • Kim, Hee Jae; Konarov, Aishuak; Jo, Jae Hyeon
  • Advanced Energy Materials, Vol. 9, Issue 32
  • DOI: 10.1002/aenm.201901181

Understanding Oxygen Redox in Cu-Doped P2-Na 0.67 Mn 0.8 Fe 0.1 Co 0.1 O 2 Cathode Materials for Na-Ion Batteries
journal, January 2018

  • Li, Ling; Wang, Huibo; Han, Wenze
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0691816jes

Deciphering the Cathode-Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials
journal, October 2018


Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries
journal, January 2018

  • Xu, Shuyin; Wu, Jinpeng; Hu, Enyuan
  • Journal of Materials Chemistry A, Vol. 6, Issue 42
  • DOI: 10.1039/c8ta07933a

Impact of Water-Based Binder on the Electrochemical Performance of P2-Na0.67Mn0.6Fe0.25Co0.1502 Electrodes in Na-Ion Batteries
journal, December 2018


Novel Methods for Sodium-Ion Battery Materials
journal, April 2017


Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds
journal, September 2019


Na 2.3 Cu 1.1 Mn 2 O 7−δ nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach
journal, January 2020

  • Soundharrajan, Vaiyapuri; Sambandam, Balaji; Alfaruqi, Muhammad H.
  • Journal of Materials Chemistry A, Vol. 8, Issue 2
  • DOI: 10.1039/c9ta09890a

Alkaline earth metal vanadates as sodium-ion battery anodes
journal, September 2017


Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries
journal, January 2019

  • Tripathi, Abhinav; Rudola, Ashish; Gajjela, Satyanarayana Reddy
  • Journal of Materials Chemistry A, Vol. 7, Issue 45
  • DOI: 10.1039/c9ta08991h

High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies
journal, February 2019

  • Chen, Mingzhe; Liu, Qiannan; Wang, Shi‐Wen
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201803609

In Situ Investigation of Layered Oxides with Mixed Structures for Sodium‐Ion Batteries
journal, May 2019

  • Keller, Marlou; Eisenmann, Tobias; Meira, Debora
  • Small Methods, Vol. 3, Issue 11
  • DOI: 10.1002/smtd.201900239

Exploring the rate dependence of phase evolution in P2-type Na 2/3 Mn 0.8 Fe 0.1 Ti 0.1 O 2
journal, January 2019

  • Goonetilleke, Damian; Wang, Sunny; Gonzalo, Elena
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta01366k

KVOPO 4 : A New High Capacity Multielectron Na-Ion Battery Cathode
journal, May 2018


An electrochemical cell for operando bench-top X-ray diffraction
text, January 2019


A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory
journal, September 2018

  • Calder, S.; An, K.; Boehler, R.
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5033906