skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations

Abstract

Thermal conductivity of crystalline GaAs is calculated using first-principles lattice dynamics. The harmonic and cubic force constants are obtained by fitting them to the force-displacement data from density functional theory calculations. Phonon dispersion is calculated from a dynamical matrix constructed using the harmonic force constants and phonon relaxation times are calculated using Fermi's Golden rule. The calculated GaAs thermal conductivity agrees well with experimental data. Thermal conductivity accumulations as a function of the phonon mean free path and as a function of the wavelength are obtained. Our results predict a significant size effect on the GaAs thermal conductivity in the nanoscale. Relaxation times of optical phonons and their contributions from different scattering channels are also studied. Such information will help the understanding of hot phonon effects in GaAs-based devices.

Authors:
 [1];  [2];  [3];  [2];  [2]
  1. Univ. of Notre Dame, IN (United States). Aerospace and Mechanical Engineering
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Mechanical Engineering
  3. Univ. of Tokyo (Japan). Mechanical Engineering
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1381947
Grant/Contract Number:  
SC0001299
Resource Type:
Accepted Manuscript
Journal Name:
Europhysics Letters
Additional Journal Information:
Journal Volume: 101; Journal Issue: 1; Journal ID: ISSN 0295-5075
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Luo, Tengfei, Garg, Jivtesh, Shiomi, Junichiro, Esfarjani, Keivan, and Chen, Gang. Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. United States: N. p., 2013. Web. doi:10.1209/0295-5075/101/16001.
Luo, Tengfei, Garg, Jivtesh, Shiomi, Junichiro, Esfarjani, Keivan, & Chen, Gang. Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. United States. doi:10.1209/0295-5075/101/16001.
Luo, Tengfei, Garg, Jivtesh, Shiomi, Junichiro, Esfarjani, Keivan, and Chen, Gang. Thu . "Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations". United States. doi:10.1209/0295-5075/101/16001. https://www.osti.gov/servlets/purl/1381947.
@article{osti_1381947,
title = {Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations},
author = {Luo, Tengfei and Garg, Jivtesh and Shiomi, Junichiro and Esfarjani, Keivan and Chen, Gang},
abstractNote = {Thermal conductivity of crystalline GaAs is calculated using first-principles lattice dynamics. The harmonic and cubic force constants are obtained by fitting them to the force-displacement data from density functional theory calculations. Phonon dispersion is calculated from a dynamical matrix constructed using the harmonic force constants and phonon relaxation times are calculated using Fermi's Golden rule. The calculated GaAs thermal conductivity agrees well with experimental data. Thermal conductivity accumulations as a function of the phonon mean free path and as a function of the wavelength are obtained. Our results predict a significant size effect on the GaAs thermal conductivity in the nanoscale. Relaxation times of optical phonons and their contributions from different scattering channels are also studied. Such information will help the understanding of hot phonon effects in GaAs-based devices.},
doi = {10.1209/0295-5075/101/16001},
journal = {Europhysics Letters},
number = 1,
volume = 101,
place = {United States},
year = {2013},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

Nanoscale heat transfer – from computation to experiment
journal, January 2013

  • Luo, Tengfei; Chen, Gang
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 10
  • DOI: 10.1039/c2cp43771f

Picosecond transient thermoreflectance for thermal conductivity characterization
journal, February 2019

  • Jeong, Jihoon; Meng, Xianghai; Rockwell, Ann Kathryn
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 23, Issue 3
  • DOI: 10.1080/15567265.2019.1580807

Nanoscale heat transfer – from computation to experiment
journal, January 2013

  • Luo, Tengfei; Chen, Gang
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 10
  • DOI: 10.1039/c2cp43771f

Anisotropic thermal conductivity in single crystal β-gallium oxide
journal, March 2015

  • Guo, Zhi; Verma, Amit; Wu, Xufei
  • Applied Physics Letters, Vol. 106, Issue 11
  • DOI: 10.1063/1.4916078

Picosecond transient thermoreflectance for thermal conductivity characterization
journal, February 2019

  • Jeong, Jihoon; Meng, Xianghai; Rockwell, Ann Kathryn
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 23, Issue 3
  • DOI: 10.1080/15567265.2019.1580807

Resonant bonding leads to low lattice thermal conductivity
journal, April 2014

  • Lee, Sangyeop; Esfarjani, Keivan; Luo, Tengfei
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4525

ab initio Energetics and Thermoelectric Profiles of Gallium Pnictide Polytypes
journal, April 2019


Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations
journal, January 2018

  • Sun, Zhehao; Yuan, Kunpeng; Zhang, Xiaoliang
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 48
  • DOI: 10.1039/c8cp05858j

Ultrahigh thermal conductivity of carbon allotropes with correlations with the scaled Pugh ratio
journal, January 2019

  • Wang, Fancy Qian; Hu, Ming; Wang, Qian
  • Journal of Materials Chemistry A, Vol. 7, Issue 11
  • DOI: 10.1039/c8ta12236a

Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice
journal, January 2013

  • Maznev, A. A.; Hofmann, Felix; Jandl, Adam
  • Applied Physics Letters, Vol. 102, Issue 4
  • DOI: 10.1063/1.4789520

First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
journal, January 2015

  • Gu, Xiaokun; Yang, Ronggui
  • Journal of Applied Physics, Vol. 117, Issue 2
  • DOI: 10.1063/1.4905540

Role of low-energy phonons with mean-free-paths >0.8 μm in heat conduction in silicon
journal, June 2016

  • Jiang, Puqing; Lindsay, Lucas; Koh, Yee Kan
  • Journal of Applied Physics, Vol. 119, Issue 24
  • DOI: 10.1063/1.4954674

Enhanced thermoelectric performance in single-crystal-like semiconducting flexible GaAs films
journal, March 2019

  • Singh, S.; Dutta, P.; Rathi, M.
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5086061

Modeling ballistic phonon transport from a cylindrical electron beam heat source
journal, September 2019

  • Wehmeyer, Geoff
  • Journal of Applied Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.5115165

Quantitative thermal measurement by the use of scanning thermal microscope and resistive thermal probes
journal, January 2020

  • Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Harris, Kurt
  • Journal of Applied Physics, Vol. 127, Issue 3
  • DOI: 10.1063/1.5125062

Advances in the measurement and computation of thermal phonon transport properties
journal, January 2015


Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure
journal, January 2018

  • Bescond, M.; Logoteta, D.; Michelini, F.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 6
  • DOI: 10.1088/1361-648x/aaa4cf

Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering
journal, March 2018

  • Barati, M.; Vazifehshenas, T.; Salavati-fard, T.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 15
  • DOI: 10.1088/1361-648x/aab422

Monte Carlo prediction of ballistic effect on phonon transport in silicon in the presence of small localized heat source
journal, July 2019

  • Nghiem, Thu Trang; Trannoy, Nathalie; Randrianalisoa, Jaona
  • Nanotechnology, Vol. 30, Issue 41
  • DOI: 10.1088/1361-6528/ab2c1c

The impact of hydrogenation on the thermal transport of silicene
journal, January 2017


Ab initio thermal transport in compound semiconductors
journal, April 2013


Ab initio study of the unusual thermal transport properties of boron arsenide and related materials
journal, December 2013


Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles
journal, February 2014


Phonon thermal transport in strained and unstrained graphene from first principles
journal, April 2014


Examining the Callaway model for lattice thermal conductivity
journal, July 2014


Phonon thermal transport in Bi 2 Te 3 from first principles
journal, October 2014


Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs
journal, May 2016


Universal phonon mean free path spectra in crystalline semiconductors at high temperature.
text, January 2013

  • Freedman, Justin P.; Leach, Jacob H.; Preble, Edward A.
  • Carnegie Mellon University
  • DOI: 10.1184/r1/6490241.v1

Nanocomposites for thermoelectrics and thermal engineering
journal, September 2015


Nano-microstructural control of phonon engineering for thermoelectric energy harvesting
journal, March 2018

  • Liu, Zihang; Mao, Jun; Liu, Te-Huan
  • MRS Bulletin, Vol. 43, Issue 3
  • DOI: 10.1557/mrs.2018.7