skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

Authors:
 [1];  [2];  [1];  [1];  [1];  [3];  [4]; ORCiD logo [1]
  1. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853 USA
  2. Department of Material Science and Engineering, Cornell University, Ithaca NY 14853 USA
  3. Department of Physics, Cornell University, Ithaca NY 14853 USA
  4. Material Science and Engineering, Rensselaer Polytechnic Institute, Troy NY 12180 USA
Publication Date:
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1380043
Grant/Contract Number:  
FOA-001002-2265
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 56 Journal Issue: 42; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Choudhury, Snehashis, Tu, Zhengyuan, Stalin, Sanjuna, Vu, Duylinh, Fawole, Kristen, Gunceler, Deniz, Sundararaman, Ravishankar, and Archer, Lynden A. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Germany: N. p., 2017. Web. doi:10.1002/anie.201707754.
Choudhury, Snehashis, Tu, Zhengyuan, Stalin, Sanjuna, Vu, Duylinh, Fawole, Kristen, Gunceler, Deniz, Sundararaman, Ravishankar, & Archer, Lynden A. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Germany. doi:10.1002/anie.201707754.
Choudhury, Snehashis, Tu, Zhengyuan, Stalin, Sanjuna, Vu, Duylinh, Fawole, Kristen, Gunceler, Deniz, Sundararaman, Ravishankar, and Archer, Lynden A. Fri . "Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport". Germany. doi:10.1002/anie.201707754.
@article{osti_1380043,
title = {Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport},
author = {Choudhury, Snehashis and Tu, Zhengyuan and Stalin, Sanjuna and Vu, Duylinh and Fawole, Kristen and Gunceler, Deniz and Sundararaman, Ravishankar and Archer, Lynden A.},
abstractNote = {},
doi = {10.1002/anie.201707754},
journal = {Angewandte Chemie (International Edition)},
number = 42,
volume = 56,
place = {Germany},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/anie.201707754

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Characterization of Lithium Electrode in Lithium Imides/Ethylene Carbonate and Cyclic Ether Electrolytes
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Wang, Xianming
  • Journal of The Electrochemical Society, Vol. 151, Issue 3
  • DOI: 10.1149/1.1644137

Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
journal, September 2013

  • Tu, Zhengyuan; Kambe, Yu; Lu, Yingying
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300654
  • DOI: 10.1002/aenm.201300654

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


A self-defense redox mediator for efficient lithium–O 2 batteries
journal, January 2016

  • Zhang, Tao; Liao, Kaiming; He, Ping
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02803E

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
journal, February 2017


Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites
journal, March 2013

  • Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.
  • Chemistry of Materials, Vol. 25, Issue 6
  • DOI: 10.1021/cm303091j

A Highly Reversible Room-Temperature Sodium Metal Anode
journal, November 2015


The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
journal, October 2013

  • Gunceler, Deniz; Letchworth-Weaver, Kendra; Sundararaman, Ravishankar
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074005

Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth
journal, November 2014

  • Jäckle, Markus; Groß, Axel
  • The Journal of Chemical Physics, Vol. 141, Issue 17
  • DOI: 10.1063/1.4901055

A dendrite-suppressing composite ion conductor from aramid nanofibres
journal, January 2015

  • Tung, Siu-On; Ho, Szushen; Yang, Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7152

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes
journal, April 2015

  • Liang, Zheng; Zheng, Guangyuan; Liu, Chong
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5046318

Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes
journal, February 2015

  • Lu, Yingying; Tikekar, Mukul; Mohanty, Ritesh
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201402073

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Designer interphases for the lithium-oxygen electrochemical cell
journal, April 2017

  • Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.
  • Science Advances, Vol. 3, Issue 4
  • DOI: 10.1126/sciadv.1602809

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries
journal, March 2014

  • Ha, Se-Young; Lee, Yong-Won; Woo, Sang Won
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 6, p. 4063-4073
  • DOI: 10.1021/am405619v

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes
journal, January 2017

  • Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602367

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions
journal, July 2016

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600320

Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions
journal, January 2014

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.085405jes

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362