Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions
Abstract
Safe and practical solar-driven hydrogen generators must be capable of efficient and stable operation under diurnal cycling with full separation of gaseous H2 and O2 products. In this paper, a novel architecture that fulfills all of these requirements is presented. The approach is inherently scalable and provides versatility for operation under diverse electrolyte and lighting conditions. The concept is validated using a 1 cm2 triple-junction photovoltaic cell with its illuminated photocathode protected by a composite coating comprising an organic encapsulant with an embedded catalytic support. The device is compatible with operation under conditions ranging from 1 M H2SO4 to 1 M KOH, enabling flexibility in selection of semiconductor, electrolyte, membrane, and catalyst. Stable operation at a solar-to-hydrogen conversion efficiency of >10% is demonstrated under continuous operation, as well as under diurnal light cycling for at least 4 d, with simulated sunlight. Operational characteristics are validated by extended time outdoor testing. A membrane ensures products are separated, with nonexplosive gas streams generated for both alkaline and acidic systems. Finally, analysis of operational characteristics under different lighting conditions is enabled by comparison of a device model to experimental data.
- Authors:
-
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Publication Date:
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- OSTI Identifier:
- 1379904
- Alternate Identifier(s):
- OSTI ID: 1398282
- Grant/Contract Number:
- AC02-05CH11231; SC0004993
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Advanced Energy Materials
- Additional Journal Information:
- Journal Volume: 7; Journal Issue: 13; Journal ID: ISSN 1614-6832
- Publisher:
- Wiley
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 36 MATERIALS SCIENCE; 14 SOLAR ENERGY; corrosion protection; high efficiency; hybrid composites; outdoor testing; solar water splitting
Citation Formats
Walczak, Karl A., Segev, Gideon, Larson, David M., Beeman, Jeffrey W., Houle, Frances A., and Sharp, Ian D. Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions. United States: N. p., 2017.
Web. doi:10.1002/aenm.201602791.
Walczak, Karl A., Segev, Gideon, Larson, David M., Beeman, Jeffrey W., Houle, Frances A., & Sharp, Ian D. Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions. United States. https://doi.org/10.1002/aenm.201602791
Walczak, Karl A., Segev, Gideon, Larson, David M., Beeman, Jeffrey W., Houle, Frances A., and Sharp, Ian D. Fri .
"Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions". United States. https://doi.org/10.1002/aenm.201602791. https://www.osti.gov/servlets/purl/1379904.
@article{osti_1379904,
title = {Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions},
author = {Walczak, Karl A. and Segev, Gideon and Larson, David M. and Beeman, Jeffrey W. and Houle, Frances A. and Sharp, Ian D.},
abstractNote = {Safe and practical solar-driven hydrogen generators must be capable of efficient and stable operation under diurnal cycling with full separation of gaseous H2 and O2 products. In this paper, a novel architecture that fulfills all of these requirements is presented. The approach is inherently scalable and provides versatility for operation under diverse electrolyte and lighting conditions. The concept is validated using a 1 cm2 triple-junction photovoltaic cell with its illuminated photocathode protected by a composite coating comprising an organic encapsulant with an embedded catalytic support. The device is compatible with operation under conditions ranging from 1 M H2SO4 to 1 M KOH, enabling flexibility in selection of semiconductor, electrolyte, membrane, and catalyst. Stable operation at a solar-to-hydrogen conversion efficiency of >10% is demonstrated under continuous operation, as well as under diurnal light cycling for at least 4 d, with simulated sunlight. Operational characteristics are validated by extended time outdoor testing. A membrane ensures products are separated, with nonexplosive gas streams generated for both alkaline and acidic systems. Finally, analysis of operational characteristics under different lighting conditions is enabled by comparison of a device model to experimental data.},
doi = {10.1002/aenm.201602791},
journal = {Advanced Energy Materials},
number = 13,
volume = 7,
place = {United States},
year = {2017},
month = {2}
}
Web of Science
Works referenced in this record:
Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers
journal, January 2014
- Liu, Rui; Zheng, Zhi; Spurgeon, Joshua
- Energy Environ. Sci., Vol. 7, Issue 8
Highly active oxide photocathode for photoelectrochemical water reduction
journal, May 2011
- Paracchino, Adriana; Laporte, Vincent; Sivula, Kevin
- Nature Materials, Vol. 10, Issue 6
Simulation of I–V characteristics of a PV module with shaded PV cells
journal, February 2003
- Kawamura, Hajime; Naka, Kazuhito; Yonekura, Norihiro
- Solar Energy Materials and Solar Cells, Vol. 75, Issue 3-4
A Stabilized, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting Cell Incorporating Earth-Abundant Electrocatalysts with Steady-State pH Gradients and Product Separation Enabled by a Bipolar Membrane
journal, April 2016
- Sun, Ke; Liu, Rui; Chen, Yikai
- Advanced Energy Materials, Vol. 6, Issue 13
Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972
- Fujishima, Akira; Honda, Kenichi
- Nature, Vol. 238, Issue 5358, p. 37-38
Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells
journal, June 2016
- Scheuermann, Andrew G.; McIntyre, Paul C.
- The Journal of Physical Chemistry Letters, Vol. 7, Issue 14
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
journal, July 2016
- Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria
- Nature Communications, Vol. 7, Issue 1
Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
journal, January 2014
- Sathre, Roger; Scown, Corinne D.; Morrow, William R.
- Energy Environ. Sci., Vol. 7, Issue 10
Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces
journal, April 2014
- Yang, Jinhui; Walczak, Karl; Anzenberg, Eitan
- Journal of the American Chemical Society, Vol. 136, Issue 17
III–V multijunction solar cells for concentrating photovoltaics
journal, January 2009
- Cotal, Hector; Fetzer, Chris; Boisvert, Joseph
- Energy Environ. Sci., Vol. 2, Issue 2
Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution
journal, September 2012
- Chen, Shiyou; Wang, Lin-Wang
- Chemistry of Materials, Vol. 24, Issue 18
Equivalent circuit models for triple-junction concentrator solar cells
journal, March 2012
- Segev, Gideon; Mittelman, Gur; Kribus, Abraham
- Solar Energy Materials and Solar Cells, Vol. 98
Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015
- Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
- The Journal of Physical Chemistry C, Vol. 119, Issue 43
Design and cost considerations for practical solar-hydrogen generators
journal, January 2014
- Rodriguez, Claudia A.; Modestino, Miguel A.; Psaltis, Demetri
- Energy Environ. Sci., Vol. 7, Issue 12
Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
journal, January 2010
- Chen, Zhebo; Jaramillo, Thomas F.; Deutsch, Todd G.
- Journal of Materials Research, Vol. 25, Issue 1
A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO 2 films
journal, January 2015
- Verlage, Erik; Hu, Shu; Liu, Rui
- Energy & Environmental Science, Vol. 8, Issue 11
Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology
journal, January 2016
- Sathre, Roger; Greenblatt, Jeffery B.; Walczak, Karl
- Energy & Environmental Science, Vol. 9, Issue 3
A comparative technoeconomic analysis of renewable hydrogen production using solar energy
journal, January 2016
- Shaner, Matthew R.; Atwater, Harry A.; Lewis, Nathan S.
- Energy & Environmental Science, Vol. 9, Issue 7
An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system
journal, January 2014
- Jin, Jian; Walczak, Karl; Singh, Meenesh R.
- Energy Environ. Sci., Vol. 7, Issue 10
Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se 2 photocathodes
journal, January 2015
- Kumagai, Hiromu; Minegishi, Tsutomu; Sato, Naotoshi
- Journal of Materials Chemistry A, Vol. 3, Issue 16
Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011
- Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
- Nature Materials, Vol. 10, Issue 7
Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015
- Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
- Energy & Environmental Science, Vol. 8, Issue 10
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013
- Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
- Energy & Environmental Science, Vol. 6, Issue 7
Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH
journal, April 2016
- Luo, Jingshan; Vermaas, David A.; Bi, Dongqin
- Advanced Energy Materials, Vol. 6, Issue 13
Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012
- Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
- Energy & Environmental Science, Vol. 5, Issue 12
Material requirements for membrane separators in a water-splitting photoelectrochemical cell
journal, January 2014
- Berger, Alan; Segalman, R. A.; Newman, J.
- Energy Environ. Sci., Vol. 7, Issue 4
Integrated microfluidic test-bed for energy conversion devices
journal, January 2013
- Modestino, Miguel A.; Diaz-Botia, Camilo A.; Haussener, Sophia
- Physical Chemistry Chemical Physics, Vol. 15, Issue 19
Scaling with Ohm's Law; Wired vs. Wireless Photoelectrochemical Cells
journal, January 2013
- Newman, John
- Journal of The Electrochemical Society, Vol. 160, Issue 3
Toward Stable Solar Hydrogen Generation Using Organic Photoelectrochemical Cells
journal, March 2015
- Haro, Marta; Solis, Claudia; Molina, Gonzalo
- The Journal of Physical Chemistry C, Vol. 119, Issue 12
Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014
- Döscher, H.; Geisz, J. F.; Deutsch, T. G.
- Energy Environ. Sci., Vol. 7, Issue 9
Renewable fuels from concentrated solar power: towards practical artificial photosynthesis
journal, January 2015
- Bonke, Shannon A.; Wiechen, Mathias; MacFarlane, Douglas R.
- Energy & Environmental Science, Vol. 8, Issue 9
Stable Solar-Driven Water Oxidation to O 2 (g) by Ni-Oxide-Coated Silicon Photoanodes
journal, January 2015
- Sun, Ke; McDowell, Matthew T.; Nielander, Adam C.
- The Journal of Physical Chemistry Letters, Vol. 6, Issue 4
570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition
journal, January 2016
- Zhou, Xinghao; Liu, Rui; Sun, Ke
- Energy & Environmental Science, Vol. 9, Issue 3
Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
journal, September 2015
- May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David
- Nature Communications, Vol. 6, Issue 1
Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
journal, January 2013
- Haussener, Sophia; Hu, Shu; Xiang, Chengxiang
- Energy & Environmental Science, Vol. 6, Issue 12
Non-linear luminescent coupling in series-connected multijunction solar cells
journal, June 2012
- Steiner, Myles A.; Geisz, John F.
- Applied Physics Letters, Vol. 100, Issue 25
Estimation of multi-junction solar cell parameters: Estimation of multi-junction solar cell parameters
journal, February 2012
- Ben Or, Asaf; Appelbaum, Joseph
- Progress in Photovoltaics: Research and Applications
Works referencing / citing this record:
Vapor-fed solar hydrogen production exceeding 15% efficiency using earth abundant catalysts and anion exchange membrane
journal, January 2017
- Heremans, Gino; Trompoukis, Christos; Daems, Nick
- Sustainable Energy & Fuels, Vol. 1, Issue 10
Editors' Choice—A Monolithic Photoelectrochemical Device Evolving Hydrogen in Pure Water
journal, January 2019
- Kistler, Tobias A.; Danilovic, Nemanja; Agbo, Peter
- Journal of The Electrochemical Society, Vol. 166, Issue 13
Vapor-fed electrolysis of water using earth-abundant catalysts in Nafion or in bipolar Nafion/poly(benzimidazolium) membranes
journal, January 2019
- Giesbrecht, Patrick K.; Müller, Astrid M.; Read, Carlos G.
- Sustainable Energy & Fuels, Vol. 3, Issue 12
Integrated Membrane-Electrode-Assembly Photoelectrochemical Cell under Various Feed Conditions for Solar Water Splitting
journal, December 2018
- Kistler, Tobias A.; Larson, David; Walczak, Karl
- Journal of The Electrochemical Society, Vol. 166, Issue 5