DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

Abstract

Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host-guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V III ) {[V III 2 (OH) 2 (L)], LH 4 =biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V IV ), [V IV 2 O 2 (L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V III ) shows the second highest CO 2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g -1 ) and involves hydrogen bonding between the OH group of the host and the O-donor of CO 2 , which binds in an end-on manner, =1.863(1) Å. In contrast, CO 2 -loaded MFM-300(V IV ) shows CO 2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique O CO2 ···c.g. phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO 2 in the pores is directly influenced by these primary binding sites.

Authors:
 [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [1];  [1];  [1];  [4];  [4];  [5];  [2];  [2];  [3];  [6];  [1];  [1]
  1. Univ. of Manchester (United Kingdom). School of Chemistry
  2. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Neutron Source
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division (CEMD)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  5. Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.
  6. Cardiff Univ. (United Kingdom). School of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1356917
Alternate Identifier(s):
OSTI ID: 1379736
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231; SC0001015
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lu, Zhenzhong, Godfrey, Harry G. W., da Silva, Ivan, Cheng, Yongqiang, Savage, Mathew, Tuna, Floriana, McInnes, Eric J. L., Teat, Simon J., Gagnon, Kevin J., Frogley, Mark D., Manuel, Pascal, Rudić, Svemir, Ramirez-Cuesta, Anibal J., Easun, Timothy L., Yang, Sihai, and Schröder, Martin. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework. United States: N. p., 2017. Web. doi:10.1038/ncomms14212.
Lu, Zhenzhong, Godfrey, Harry G. W., da Silva, Ivan, Cheng, Yongqiang, Savage, Mathew, Tuna, Floriana, McInnes, Eric J. L., Teat, Simon J., Gagnon, Kevin J., Frogley, Mark D., Manuel, Pascal, Rudić, Svemir, Ramirez-Cuesta, Anibal J., Easun, Timothy L., Yang, Sihai, & Schröder, Martin. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework. United States. https://doi.org/10.1038/ncomms14212
Lu, Zhenzhong, Godfrey, Harry G. W., da Silva, Ivan, Cheng, Yongqiang, Savage, Mathew, Tuna, Floriana, McInnes, Eric J. L., Teat, Simon J., Gagnon, Kevin J., Frogley, Mark D., Manuel, Pascal, Rudić, Svemir, Ramirez-Cuesta, Anibal J., Easun, Timothy L., Yang, Sihai, and Schröder, Martin. Mon . "Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework". United States. https://doi.org/10.1038/ncomms14212. https://www.osti.gov/servlets/purl/1356917.
@article{osti_1356917,
title = {Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework},
author = {Lu, Zhenzhong and Godfrey, Harry G. W. and da Silva, Ivan and Cheng, Yongqiang and Savage, Mathew and Tuna, Floriana and McInnes, Eric J. L. and Teat, Simon J. and Gagnon, Kevin J. and Frogley, Mark D. and Manuel, Pascal and Rudić, Svemir and Ramirez-Cuesta, Anibal J. and Easun, Timothy L. and Yang, Sihai and Schröder, Martin},
abstractNote = {Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host-guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V III ) {[V III 2 (OH) 2 (L)], LH 4 =biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V IV ), [V IV 2 O 2 (L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V III ) shows the second highest CO 2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g -1 ) and involves hydrogen bonding between the OH group of the host and the O-donor of CO 2 , which binds in an end-on manner, =1.863(1) Å. In contrast, CO 2 -loaded MFM-300(V IV ) shows CO 2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique O CO2 ···c.g. phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO 2 in the pores is directly influenced by these primary binding sites.},
doi = {10.1038/ncomms14212},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {Mon Feb 13 00:00:00 EST 2017},
month = {Mon Feb 13 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Structures of MFM-300(V). Views of (a) MFM-300(VIII) and of (b) MFM-300(VIV). The pore size is ~6.7 6.7 Å for both MFM-300(VIII) and MFM-300(VIV) taking into consideration Van der Waals radii. The hydroxyl groups (green and red balls) in MFM-300(VIII) protrude into the channel, which change to O2- bridgemore » (shown as red ball) in MFM-300(VIV).« less

Save / Share:

Works referenced in this record:

A Breathing Hybrid Organic–Inorganic Solid with Very Large Pores and High Magnetic Characteristics
journal, January 2002


Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V)
journal, September 2011

  • Leclerc, Hervé; Devic, Thomas; Devautour-Vinot, Sabine
  • The Journal of Physical Chemistry C, Vol. 115, Issue 40
  • DOI: 10.1021/jp206655y

Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite-Type Zeolitic Imidazolate Frameworks
journal, July 2014

  • Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Gándara, Felipe
  • Angewandte Chemie International Edition, Vol. 53, Issue 40
  • DOI: 10.1002/anie.201403980

An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO 2 over C 2 H 2
journal, February 2016

  • Foo, Maw Lin; Matsuda, Ryotaro; Hijikata, Yuh
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.5b10491

Vanadium metal–organic frameworks: structures and applications
journal, January 2014

  • Van Der Voort, Pascal; Leus, Karen; Liu, Ying-Ya
  • New J. Chem., Vol. 38, Issue 5
  • DOI: 10.1039/C3NJ01130E

Selective Binding of O 2 over N 2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites
journal, September 2011

  • Bloch, Eric D.; Murray, Leslie J.; Queen, Wendy L.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205976v

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Actuation of Asymmetric Cyclopropanation Catalysts: Reversible Single-Crystal to Single-Crystal Reduction of Metal-Organic Frameworks
journal, August 2011

  • Falkowski, Joseph M.; Wang, Cheng; Liu, Sophie
  • Angewandte Chemie International Edition, Vol. 50, Issue 37
  • DOI: 10.1002/anie.201104086

Why hybrid porous solids capture greenhouse gases?
journal, January 2011

  • Férey, Gérard; Serre, Christian; Devic, Thomas
  • Chem. Soc. Rev., Vol. 40, Issue 2
  • DOI: 10.1039/C0CS00040J

A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide
journal, May 2014

  • Gassensmith, Jeremiah J.; Kim, Jeung Yoon; Holcroft, James M.
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja5006465

Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments
journal, January 2013

  • Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I.
  • The Journal of Chemical Physics, Vol. 138, Issue 3
  • DOI: 10.1063/1.4774375

Systematic Postsynthetic Modification of Nanoporous Organic Frameworks for Enhanced CO 2 Capture from Flue Gas and Landfill Gas
journal, February 2016

  • Islamoglu, Timur; Kim, Tong; Kahveci, Zafer
  • The Journal of Physical Chemistry C, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpcc.5b12247

High-Field, Multifrequency EPR Study of the Vanadium(III) Hexaaqua Cation
journal, December 1999

  • Tregenna-Piggott, Philip L. W.; Weihe, Høgni; Bendix, Jesper
  • Inorganic Chemistry, Vol. 38, Issue 26
  • DOI: 10.1021/ic990399w

Enhancement of CO 2 Adsorption and Catalytic Properties by Fe-Doping of [Ga 2 (OH) 2 (L)] (H 4 L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga 2 )
journal, January 2016


Selective Adsorption of Sulfur Dioxide in a Robust Metal-Organic Framework Material
journal, August 2016

  • Savage, Mathew; Cheng, Yongqiang; Easun, Timothy L.
  • Advanced Materials, Vol. 28, Issue 39
  • DOI: 10.1002/adma.201602338

“Host−Guest” Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials
journal, July 2006

  • Wan, Ying; Yang, Haifeng; Zhao, Dongyuan
  • Accounts of Chemical Research, Vol. 39, Issue 7
  • DOI: 10.1021/ar050091a

Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions
journal, November 2014


Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host
journal, September 2012

  • Yang, Sihai; Sun, Junliang; Ramirez-Cuesta, Anibal J.
  • Nature Chemistry, Vol. 4, Issue 11
  • DOI: 10.1038/nchem.1457

Postsynthetic modification of metal–organic frameworks
journal, January 2009

  • Wang, Zhenqiang; Cohen, Seth M.
  • Chemical Society Reviews, Vol. 38, Issue 5
  • DOI: 10.1039/b802258p

Ti 3+ -, V 2+/3+ -, Cr 2+/3+ -, Mn 2+ -, and Fe 2+ -Substituted MOF-5 and Redox Reactivity in Cr- and Fe-MOF-5
journal, August 2013

  • Brozek, Carl K.; Dincă, Mircea
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4064475

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Direct Observation and Quantification of CO 2 Binding Within an Amine-Functionalized Nanoporous Solid
journal, October 2010

  • Vaidhyanathan, Ramanathan; Iremonger, Simon S.; Shimizu, George K. H.
  • Science, Vol. 330, Issue 6004
  • DOI: 10.1126/science.1194237

Ordered porous materials for emerging applications
journal, June 2002


An overview of the synthesis of ordered mesoporous materials
journal, January 2013


Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer
journal, September 2011

  • Yanai, Nobuhiro; Kitayama, Koji; Hijikata, Yuh
  • Nature Materials, Vol. 10, Issue 10, p. 787-793
  • DOI: 10.1038/nmat3104

Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature
journal, December 2005

  • Millward, Andrew R.; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 127, Issue 51, p. 17998-17999
  • DOI: 10.1021/ja0570032

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Extra adsorption and adsorbate superlattice formation in metal-organic frameworks
journal, November 2015

  • Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15734

Methane storage in flexible metal–organic frameworks with intrinsic thermal management
journal, October 2015

  • Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.
  • Nature, Vol. 527, Issue 7578
  • DOI: 10.1038/nature15732

Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation
journal, February 2013

  • Nugent, Patrick; Belmabkhout, Youssef; Burd, Stephen D.
  • Nature, Vol. 495, Issue 7439, p. 80-84
  • DOI: 10.1038/nature11893

Single-crystal refinement of the structure of carbon dioxide
journal, November 1980

  • Simon, A.; Peters, K.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 36, Issue 11
  • DOI: 10.1107/S0567740880009879

Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives
journal, January 2016


Stepwise Synthesis of Robust Metal–Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nodes in a Single-Crystal to Single-Crystal Transformation
journal, May 2014

  • Liu, Tian-Fu; Zou, Lanfang; Feng, Dawei
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5023283

Actuation of Asymmetric Cyclopropanation Catalysts: Reversible Single-Crystal to Single-Crystal Reduction of Metal-Organic Frameworks
journal, August 2011

  • Falkowski, Joseph M.; Wang, Cheng; Liu, Sophie
  • Angewandte Chemie, Vol. 123, Issue 37
  • DOI: 10.1002/ange.201104086

Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite-Type Zeolitic Imidazolate Frameworks
journal, July 2014

  • Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Gándara, Felipe
  • Angewandte Chemie, Vol. 126, Issue 40
  • DOI: 10.1002/ange.201403980

“Host—Guest” Chemistry in the Synthesis of Ordered Nonsiliceous Mesoporous Materials
journal, October 2006


A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics
journal, January 2002


Enhancement of CO 2 Adsorption and Catalytic Properties by Fe-Doping of [Ga 2 (OH) 2 (L)] (H 4 L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga 2 )
journal, January 2016


High-Field, Multifrequency EPR Study of the Vanadium(III) Hexaaqua Cation
journal, December 1999

  • Tregenna-Piggott, Philip L. W.; Weihe, Høgni; Bendix, Jesper
  • Inorganic Chemistry, Vol. 38, Issue 26
  • DOI: 10.1021/ic990399w

Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature
journal, December 2005

  • Millward, Andrew R.; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 127, Issue 51, p. 17998-17999
  • DOI: 10.1021/ja0570032

A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide
journal, May 2014

  • Gassensmith, Jeremiah J.; Kim, Jeung Yoon; Holcroft, James M.
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja5006465

Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments
journal, January 2013

  • Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I.
  • The Journal of Chemical Physics, Vol. 138, Issue 3
  • DOI: 10.1063/1.4774375

Works referencing / citing this record:

Water‐stable Adenine‐based MOFs with Polar Pores for Selective CO 2 Capture
journal, July 2019

  • Maity, Rahul; Singh, Himan Dev; Yadav, Ankit Kumar
  • Chemistry – An Asian Journal, Vol. 14, Issue 20
  • DOI: 10.1002/asia.201901020

Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO 2 Fixation Reactions
journal, April 2018

  • Bhanja, Piyali; Modak, Arindam; Bhaumik, Asim
  • Chemistry – A European Journal, Vol. 24, Issue 29
  • DOI: 10.1002/chem.201800075

Facile Synthesis of In-Chain, Multicomponent, Functionalized Polymers via Living Anionic Copolymerization through the Ugi Four-Component Reaction (Ugi-4CR)
journal, July 2017

  • Shen, Heyu; Ma, Hongwei; Liu, Pibo
  • Macromolecular Rapid Communications, Vol. 38, Issue 18
  • DOI: 10.1002/marc.201700353

Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform porous structure
journal, March 2019


Stepwise observation and quantification and mixed matrix membrane separation of CO 2 within a hydroxy-decorated porous host
journal, January 2017

  • Morris, Christopher G.; Jacques, Nicholas M.; Godfrey, Harry G. W.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/c6sc04343g

Potential of ultramicroporous metal–organic frameworks in CO 2 clean-up
journal, January 2018

  • Shalini, Sorout; Nandi, Shyamapada; Justin, Anita
  • Chemical Communications, Vol. 54, Issue 96
  • DOI: 10.1039/c8cc03233e

Microporous mixed-metal mixed-ligand metal organic framework for selective CO 2 capture
journal, January 2018

  • Maity, Rahul; Chakraborty, Debanjan; Nandi, Shyamapada
  • CrystEngComm, Vol. 20, Issue 39
  • DOI: 10.1039/c8ce00752g

Post-synthetic modulation of the charge distribution in a metal–organic framework for optimal binding of carbon dioxide and sulfur dioxide
journal, January 2019

  • Li, Lei; da Silva, Ivan; Kolokolov, Daniil I.
  • Chemical Science, Vol. 10, Issue 5
  • DOI: 10.1039/c8sc01959b

A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO 2 capture
journal, January 2019

  • Wen, Hui-Min; Liao, Caijun; Li, Libo
  • Journal of Materials Chemistry A, Vol. 7, Issue 7
  • DOI: 10.1039/c8ta11596f

An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu 2+ detection
journal, January 2020

  • Cheng, Changming; Zhang, Ruolin; Wang, Jiuhai
  • The Analyst, Vol. 145, Issue 3
  • DOI: 10.1039/c9an02231g

Tetrazole-based porous metal–organic frameworks for selective CO 2 adsorption and isomerization studies
journal, January 2020

  • Zhang, Rui; Meng, De-Xian; Ge, Fa-Yuan
  • Dalton Transactions, Vol. 49, Issue 7
  • DOI: 10.1039/c9dt04068d

Three metal–organic framework isomers of different pore sizes for selective CO 2 adsorption and isomerization studies
journal, January 2020


Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure.
journalarticle, January 2019

  • Zhao, Pu; Fang, Hong; Mukhopadhyay, Sanghamitra
  • Springer Science and Business Media LLC
  • DOI: 10.17863/cam.36771

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.