skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of phonon coherence and backscattering using silicon nanomeshes

Abstract

Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes with smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction.

Authors:
 [1];  [2];  [3];  [4];  [4];  [4];  [3];  [4];  [5]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Irvine, CA (United States). Dept. of Mechanical and Aerospace Engineering
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  3. Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  5. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kavli Energy NanoScience Inst., Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1379671
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nanoscale materials; thermodynamics

Citation Formats

Lee, Jaeho, Lee, Woochul, Wehmeyer, Geoff, Dhuey, Scott, Olynick, Deirdre L., Cabrini, Stefano, Dames, Chris, Urban, Jeffrey J., and Yang, Peidong. Investigation of phonon coherence and backscattering using silicon nanomeshes. United States: N. p., 2017. Web. https://doi.org/10.1038/ncomms14054.
Lee, Jaeho, Lee, Woochul, Wehmeyer, Geoff, Dhuey, Scott, Olynick, Deirdre L., Cabrini, Stefano, Dames, Chris, Urban, Jeffrey J., & Yang, Peidong. Investigation of phonon coherence and backscattering using silicon nanomeshes. United States. https://doi.org/10.1038/ncomms14054
Lee, Jaeho, Lee, Woochul, Wehmeyer, Geoff, Dhuey, Scott, Olynick, Deirdre L., Cabrini, Stefano, Dames, Chris, Urban, Jeffrey J., and Yang, Peidong. Wed . "Investigation of phonon coherence and backscattering using silicon nanomeshes". United States. https://doi.org/10.1038/ncomms14054. https://www.osti.gov/servlets/purl/1379671.
@article{osti_1379671,
title = {Investigation of phonon coherence and backscattering using silicon nanomeshes},
author = {Lee, Jaeho and Lee, Woochul and Wehmeyer, Geoff and Dhuey, Scott and Olynick, Deirdre L. and Cabrini, Stefano and Dames, Chris and Urban, Jeffrey J. and Yang, Peidong},
abstractNote = {Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes with smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction.},
doi = {10.1038/ncomms14054},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Protein Materials
journal, July 2008

  • Ackbarow, Theodor; Buehler, Markus J.
  • Journal of Computational and Theoretical Nanoscience, Vol. 5, Issue 7
  • DOI: 10.1166/jctn.2008.001

Thermal transport in phononic crystals: The role of zone folding effect
journal, April 2012

  • Dechaumphai, Edward; Chen, Renkun
  • Journal of Applied Physics, Vol. 111, Issue 7
  • DOI: 10.1063/1.3699056

Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach
journal, April 2011

  • Jeong, Changwook; Datta, Supriyo; Lundstrom, Mark
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3567111

Blocking phonons via nanoscale geometrical design
journal, October 2010


Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
journal, September 2003

  • Shi, Li; Li, Deyu; Yu, Choongho
  • Journal of Heat Transfer, Vol. 125, Issue 5
  • DOI: 10.1115/1.1597619

Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
journal, January 2011

  • Hopkins, Patrick E.; Reinke, Charles M.; Su, Mehmet F.
  • Nano Letters, Vol. 11, Issue 1
  • DOI: 10.1021/nl102918q

Phonon-boundary scattering in thin silicon layers
journal, September 1997

  • Asheghi, M.; Leung, Y. K.; Wong, S. S.
  • Applied Physics Letters, Vol. 71, Issue 13
  • DOI: 10.1063/1.119402

Phonon wave interference and thermal bandgap materials
journal, June 2015


Phonon Conduction in Periodically Porous Silicon Nanobridges
journal, December 2012

  • Marconnet, Amy M.; Kodama, Takashi; Asheghi, Mehdi
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 16, Issue 4
  • DOI: 10.1080/15567265.2012.732195

Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures
journal, April 2015

  • Nomura, Masahiro; Nakagawa, Junki; Kage, Yuta
  • Applied Physics Letters, Vol. 106, Issue 14
  • DOI: 10.1063/1.4917036

Thermal conductivity of periodic microporous silicon films
journal, February 2004

  • Song, David; Chen, Gang
  • Applied Physics Letters, Vol. 84, Issue 5
  • DOI: 10.1063/1.1642753

Thermal Transport in Silicon Nanowires at High Temperature up to 700 K
journal, May 2016


Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Influence of temperature on HSQ electron-beam lithography
journal, January 2007

  • Häffner, M.; Haug, A.; Heeren, A.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, Issue 6
  • DOI: 10.1116/1.2794324

Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
journal, January 2004

  • Dames, C.; Chen, G.
  • Journal of Applied Physics, Vol. 95, Issue 2
  • DOI: 10.1063/1.1631734

Effects of Periodic Structures on the Coherence Properties of Blackbody Radiation
journal, October 2004

  • Hu, L.; Schmidt, A.; Narayanaswamy, A.
  • Journal of Heat Transfer, Vol. 126, Issue 5
  • DOI: 10.1115/1.1795241

Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications
journal, June 2015

  • Nomura, Masahiro; Kage, Yuta; Müller, David
  • Applied Physics Letters, Vol. 106, Issue 22
  • DOI: 10.1063/1.4922198

Phonon scattering in silicon films with thickness of order 100 nm
journal, May 1999

  • Ju, Y. S.; Goodson, K. E.
  • Applied Physics Letters, Vol. 74, Issue 20
  • DOI: 10.1063/1.123994

Evaluating Broader Impacts of Nanoscale Thermal Transport Research
journal, April 2015

  • Shi, Li; Dames, Chris; Lukes, Jennifer R.
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 19, Issue 2
  • DOI: 10.1080/15567265.2015.1031857

Coherent and incoherent thermal transport in nanomeshes
journal, May 2014


Sound and heat revolutions in phononics
journal, November 2013


Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
journal, May 2013


Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010

  • Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
  • Nature Nanotechnology, Vol. 5, Issue 10
  • DOI: 10.1038/nnano.2010.149

Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
journal, June 2015

  • Alaie, Seyedhamidreza; Goettler, Drew F.; Su, Mehmet
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8228

Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers
journal, October 2014


Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
journal, January 2013


Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport
journal, November 2010

  • Hippalgaonkar, Kedar; Huang, Baoling; Chen, Renkun
  • Nano Letters, Vol. 10, Issue 11
  • DOI: 10.1021/nl101671r

Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
journal, February 2008

  • Henry, Asegun S.; Chen, Gang
  • Journal of Computational and Theoretical Nanoscience, Vol. 5, Issue 2
  • DOI: 10.1166/jctn.2008.2454

From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator Technology
journal, May 2013

  • Marconnet, Amy M.; Asheghi, Mehdi; Goodson, Kenneth E.
  • Journal of Heat Transfer, Vol. 135, Issue 6
  • DOI: 10.1115/1.4023577

Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime
journal, November 1970


Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates
journal, February 2008


Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
journal, October 2015

  • Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit
  • Applied Physics Letters, Vol. 107, Issue 17
  • DOI: 10.1063/1.4934883

Ballistic Phonon Transport in Holey Silicon
journal, April 2015


Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
journal, May 1997


Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials
journal, March 2010


Inhibited Spontaneous Emission in Solid-State Physics and Electronics
journal, May 1987


Engineering thermal conductance using a two-dimensional phononic crystal
journal, March 2014

  • Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4435

Effective phonon mean free path in polycrystalline nanostructures
journal, April 2015

  • Hori, Takuma; Shiomi, Junichiro; Dames, Chris
  • Applied Physics Letters, Vol. 106, Issue 17
  • DOI: 10.1063/1.4918703

Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
journal, September 2003


Thermal conductivity of individual silicon nanowires
journal, October 2003

  • Li, Deyu; Wu, Yiying; Kim, Philip
  • Applied Physics Letters, Vol. 83, Issue 14, p. 2934-2936
  • DOI: 10.1063/1.1616981

Phonon backscattering and thermal conductivity suppression in sawtooth nanowires
journal, August 2008

  • Moore, Arden L.; Saha, Sanjoy K.; Prasher, Ravi S.
  • Applied Physics Letters, Vol. 93, Issue 8
  • DOI: 10.1063/1.2970044

Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond
journal, July 2012


    Works referencing / citing this record:

    Minimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals
    journal, July 2019


    Minimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals
    journal, July 2019


    Akhiezer mechanism limits coherent heat conduction in phononic crystals
    journal, October 2018


    Thermal Transport in 3D Nanostructures
    journal, August 2019

    • Zhan, Haifei; Nie, Yihan; Chen, Yongnan
    • Advanced Functional Materials, Vol. 30, Issue 8
    • DOI: 10.1002/adfm.201903841

    Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization
    journal, October 2018


    Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime
    journal, April 2018


    Electron–phonon scattering effect on the lattice thermal conductivity of silicon nanostructures
    journal, January 2017

    • Fu, Bo; Tang, Guihua; Li, Yifei
    • Physical Chemistry Chemical Physics, Vol. 19, Issue 42
    • DOI: 10.1039/c7cp04638c

    Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport
    journal, January 2018

    • Cui, Liu; Shi, Sanqiang; Li, Zhao
    • Physical Chemistry Chemical Physics, Vol. 20, Issue 42
    • DOI: 10.1039/c8cp03993c

    Impact of thermally dead volume on phonon conduction along silicon nanoladders
    journal, January 2018

    • Park, Woosung; Sohn, Joon; Romano, Giuseppe
    • Nanoscale, Vol. 10, Issue 23
    • DOI: 10.1039/c8nr01788c

    Thermal transport through fishbone silicon nanoribbons: unraveling the role of Sharvin resistance
    journal, January 2019


    Investigation of thermal conduction in symmetric and asymmetric nanoporous structures
    journal, December 2017

    • Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho
    • Journal of Applied Physics, Vol. 122, Issue 24
    • DOI: 10.1063/1.5006818

    Modulating thermal conduction via phonon spectral coupling
    journal, September 2018

    • Malhotra, Abhinav; Kothari, Kartik; Maldovan, Martin
    • Journal of Applied Physics, Vol. 124, Issue 12
    • DOI: 10.1063/1.5038030

    Reevaluating the suppression function for phonon transport in nanostructures by Monte Carlo techniques
    journal, January 2019

    • Zeng, Yuqiang; Marconnet, Amy
    • Journal of Applied Physics, Vol. 125, Issue 3
    • DOI: 10.1063/1.5048626

    Towards ultimate impedance of phonon transport by nanostructure interface
    journal, January 2019

    • Ohnishi, Masato; Shiomi, Junichiro
    • APL Materials, Vol. 7, Issue 1
    • DOI: 10.1063/1.5055570

    Electron Monte Carlo simulations of nanoporous Si thin films—The influence of pore-edge charges
    journal, February 2019

    • Hao, Qing; Xiao, Yue
    • Journal of Applied Physics, Vol. 125, Issue 6
    • DOI: 10.1063/1.5078951

    Effects of metal silicide inclusion interface and shape on thermal transport in silicon nanocomposites
    journal, July 2019

    • Ferrer-Argemi, Laia; Yu, Ziqi; Lee, Jaeho
    • Journal of Applied Physics, Vol. 126, Issue 3
    • DOI: 10.1063/1.5099507

    Modeling ballistic phonon transport from a cylindrical electron beam heat source
    journal, September 2019

    • Wehmeyer, Geoff
    • Journal of Applied Physics, Vol. 126, Issue 12
    • DOI: 10.1063/1.5115165

    Kink as a new degree of freedom to tune the thermal conductivity of Si nanoribbons
    journal, October 2019

    • Yang, Lin; Zhang, Qian; Wei, Zhiyong
    • Journal of Applied Physics, Vol. 126, Issue 15
    • DOI: 10.1063/1.5119727

    Phonon and heat transport control using pillar-based phononic crystals
    journal, August 2018


    Geometrical effect of thermal conductivity in 2D silicon films with periodic nanopores
    journal, July 2018


    TSV-integrated thermoelectric cooling by holey silicon for hot spot thermal management
    journal, November 2018


    Origins of significant reduction of lattice thermal conductivity in graphene allotropes
    journal, October 2019


    Spectrally Resolved Specular Reflections of Thermal Phonons from Atomically Rough Surfaces
    journal, October 2018

    • Ravichandran, Navaneetha K.; Zhang, Hang; Minnich, Austin J.
    • Physical Review X, Vol. 8, Issue 4
    • DOI: 10.1103/physrevx.8.041004

    Heat conduction tuning by wave nature of phonons
    journal, August 2017

    • Maire, Jeremie; Anufriev, Roman; Yanagisawa, Ryoto
    • Science Advances, Vol. 3, Issue 8
    • DOI: 10.1126/sciadv.1700027

    Radiative metasurface for thermal camouflage, illusion and messaging
    journal, January 2020

    • Song, Jinlin; Huang, Shiyao; Ma, Yupu
    • Optics Express, Vol. 28, Issue 2
    • DOI: 10.1364/oe.378424