Investigation of phonon coherence and backscattering using silicon nanomeshes
Abstract
Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes with smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction.
- Authors:
-
- Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Irvine, CA (United States). Dept. of Mechanical and Aerospace Engineering
- Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
- Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
- Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kavli Energy NanoScience Inst., Berkeley, CA (United States)
- Publication Date:
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- OSTI Identifier:
- 1379671
- Grant/Contract Number:
- AC02-05CH11231
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Nature Communications
- Additional Journal Information:
- Journal Volume: 8; Journal ID: ISSN 2041-1723
- Publisher:
- Nature Publishing Group
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 36 MATERIALS SCIENCE; nanoscale materials; thermodynamics
Citation Formats
Lee, Jaeho, Lee, Woochul, Wehmeyer, Geoff, Dhuey, Scott, Olynick, Deirdre L., Cabrini, Stefano, Dames, Chris, Urban, Jeffrey J., and Yang, Peidong. Investigation of phonon coherence and backscattering using silicon nanomeshes. United States: N. p., 2017.
Web. doi:10.1038/ncomms14054.
Lee, Jaeho, Lee, Woochul, Wehmeyer, Geoff, Dhuey, Scott, Olynick, Deirdre L., Cabrini, Stefano, Dames, Chris, Urban, Jeffrey J., & Yang, Peidong. Investigation of phonon coherence and backscattering using silicon nanomeshes. United States. https://doi.org/10.1038/ncomms14054
Lee, Jaeho, Lee, Woochul, Wehmeyer, Geoff, Dhuey, Scott, Olynick, Deirdre L., Cabrini, Stefano, Dames, Chris, Urban, Jeffrey J., and Yang, Peidong. Wed .
"Investigation of phonon coherence and backscattering using silicon nanomeshes". United States. https://doi.org/10.1038/ncomms14054. https://www.osti.gov/servlets/purl/1379671.
@article{osti_1379671,
title = {Investigation of phonon coherence and backscattering using silicon nanomeshes},
author = {Lee, Jaeho and Lee, Woochul and Wehmeyer, Geoff and Dhuey, Scott and Olynick, Deirdre L. and Cabrini, Stefano and Dames, Chris and Urban, Jeffrey J. and Yang, Peidong},
abstractNote = {Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes with smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction.},
doi = {10.1038/ncomms14054},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {1}
}
Web of Science
Works referenced in this record:
Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Protein Materials
journal, July 2008
- Ackbarow, Theodor; Buehler, Markus J.
- Journal of Computational and Theoretical Nanoscience, Vol. 5, Issue 7
Thermal transport in phononic crystals: The role of zone folding effect
journal, April 2012
- Dechaumphai, Edward; Chen, Renkun
- Journal of Applied Physics, Vol. 111, Issue 7
Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach
journal, April 2011
- Jeong, Changwook; Datta, Supriyo; Lundstrom, Mark
- Journal of Applied Physics, Vol. 109, Issue 7
Blocking phonons via nanoscale geometrical design
journal, October 2010
- Heron, Jean-Savin; Bera, Chandan; Fournier, Thierry
- Physical Review B, Vol. 82, Issue 15
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
journal, September 2003
- Shi, Li; Li, Deyu; Yu, Choongho
- Journal of Heat Transfer, Vol. 125, Issue 5
Coherent Phonon Heat Conduction in Superlattices
journal, November 2012
- Luckyanova, M. N.; Garg, J.; Esfarjani, K.
- Science, Vol. 338, Issue 6109
Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
journal, January 2011
- Hopkins, Patrick E.; Reinke, Charles M.; Su, Mehmet F.
- Nano Letters, Vol. 11, Issue 1
Phonon-boundary scattering in thin silicon layers
journal, September 1997
- Asheghi, M.; Leung, Y. K.; Wong, S. S.
- Applied Physics Letters, Vol. 71, Issue 13
Phonon wave interference and thermal bandgap materials
journal, June 2015
- Maldovan, Martin
- Nature Materials, Vol. 14, Issue 7
Phonon Conduction in Periodically Porous Silicon Nanobridges
journal, December 2012
- Marconnet, Amy M.; Kodama, Takashi; Asheghi, Mehdi
- Nanoscale and Microscale Thermophysical Engineering, Vol. 16, Issue 4
Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures
journal, April 2015
- Nomura, Masahiro; Nakagawa, Junki; Kage, Yuta
- Applied Physics Letters, Vol. 106, Issue 14
Thermal conductivity of periodic microporous silicon films
journal, February 2004
- Song, David; Chen, Gang
- Applied Physics Letters, Vol. 84, Issue 5
Microscopic description of thermal-phonon coherence: From coherent transport to diffuse interface scattering in superlattices
journal, July 2014
- Latour, B.; Volz, S.; Chalopin, Y.
- Physical Review B, Vol. 90, Issue 1
Thermal Transport in Silicon Nanowires at High Temperature up to 700 K
journal, May 2016
- Lee, Jaeho; Lee, Woochul; Lim, Jongwoo
- Nano Letters, Vol. 16, Issue 7
Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010
- Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
- Nano Letters, Vol. 10, Issue 10
Influence of temperature on HSQ electron-beam lithography
journal, January 2007
- Häffner, M.; Haug, A.; Heeren, A.
- Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, Issue 6
Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
journal, January 2004
- Dames, C.; Chen, G.
- Journal of Applied Physics, Vol. 95, Issue 2
Effects of Periodic Structures on the Coherence Properties of Blackbody Radiation
journal, October 2004
- Hu, L.; Schmidt, A.; Narayanaswamy, A.
- Journal of Heat Transfer, Vol. 126, Issue 5
Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications
journal, June 2015
- Nomura, Masahiro; Kage, Yuta; Müller, David
- Applied Physics Letters, Vol. 106, Issue 22
Phonon scattering in silicon films with thickness of order 100 nm
journal, May 1999
- Ju, Y. S.; Goodson, K. E.
- Applied Physics Letters, Vol. 74, Issue 20
Evaluating Broader Impacts of Nanoscale Thermal Transport Research
journal, April 2015
- Shi, Li; Dames, Chris; Lukes, Jennifer R.
- Nanoscale and Microscale Thermophysical Engineering, Vol. 19, Issue 2
Coherent and incoherent thermal transport in nanomeshes
journal, May 2014
- Ravichandran, Navaneetha K.; Minnich, Austin J.
- Physical Review B, Vol. 89, Issue 20
Sound and heat revolutions in phononics
journal, November 2013
- Maldovan, Martin
- Nature, Vol. 503, Issue 7475
Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
journal, May 2013
- Jain, Ankit; Yu, Ying-Ju; McGaughey, Alan J. H.
- Physical Review B, Vol. 87, Issue 19
Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010
- Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
- Nature Nanotechnology, Vol. 5, Issue 10
Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
journal, June 2015
- Alaie, Seyedhamidreza; Goettler, Drew F.; Su, Mehmet
- Nature Communications, Vol. 6, Issue 1
Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers
journal, October 2014
- Wang, Yan; Huang, Haoxiang; Ruan, Xiulin
- Physical Review B, Vol. 90, Issue 16
Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
journal, January 2013
- Yang, Fan; Dames, Chris
- Physical Review B, Vol. 87, Issue 3
Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport
journal, November 2010
- Hippalgaonkar, Kedar; Huang, Baoling; Chen, Renkun
- Nano Letters, Vol. 10, Issue 11
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
journal, February 2008
- Henry, Asegun S.; Chen, Gang
- Journal of Computational and Theoretical Nanoscience, Vol. 5, Issue 2
From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator Technology
journal, May 2013
- Marconnet, Amy M.; Asheghi, Mehdi; Goodson, Kenneth E.
- Journal of Heat Transfer, Vol. 135, Issue 6
Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime
journal, November 1970
- McCurdy, A. K.; Maris, H. J.; Elbaum, C.
- Physical Review B, Vol. 2, Issue 10
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013
- Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
- Nature Materials, Vol. 13, Issue 2
Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates
journal, February 2008
- Vasseur, J. O.; Deymier, P. A.; Djafari-Rouhani, B.
- Physical Review B, Vol. 77, Issue 8
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
journal, October 2015
- Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit
- Applied Physics Letters, Vol. 107, Issue 17
Ballistic Phonon Transport in Holey Silicon
journal, April 2015
- Lee, Jaeho; Lim, Jongwoo; Yang, Peidong
- Nano Letters, Vol. 15, Issue 5
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
journal, May 1997
- Chen, G.
- Journal of Heat Transfer, Vol. 119, Issue 2
Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials
journal, March 2010
- Bera, Chandan; Mingo, Natalio; Volz, Sebastian
- Physical Review Letters, Vol. 104, Issue 11
Inhibited Spontaneous Emission in Solid-State Physics and Electronics
journal, May 1987
- Yablonovitch, Eli
- Physical Review Letters, Vol. 58, Issue 20, p. 2059-2062
Engineering thermal conductance using a two-dimensional phononic crystal
journal, March 2014
- Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.
- Nature Communications, Vol. 5, Issue 1
Effective phonon mean free path in polycrystalline nanostructures
journal, April 2015
- Hori, Takuma; Shiomi, Junichiro; Dames, Chris
- Applied Physics Letters, Vol. 106, Issue 17
Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
journal, September 2003
- Mingo, N.
- Physical Review B, Vol. 68, Issue 11
Thermal conductivity of individual silicon nanowires
journal, October 2003
- Li, Deyu; Wu, Yiying; Kim, Philip
- Applied Physics Letters, Vol. 83, Issue 14, p. 2934-2936
Phonon backscattering and thermal conductivity suppression in sawtooth nanowires
journal, August 2008
- Moore, Arden L.; Saha, Sanjoy K.; Prasher, Ravi S.
- Applied Physics Letters, Vol. 93, Issue 8
Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond
journal, July 2012
- Li, Nianbei; Ren, Jie; Wang, Lei
- Reviews of Modern Physics, Vol. 84, Issue 3
Lattice thermal transport in two-dimensional alloys and fractal heterostructures
journal, January 2021
- Krishnamoorthy, Aravind; Baradwaj, Nitish; Nakano, Aiichiro
- Scientific Reports, Vol. 11, Issue 1
Theoretical Phonon Thermal Conductivity of Si/Ge Superlattice Nanowires
conference, December 2008
- Dames, Chris; Chen, Gang
- ASME 2003 Heat Transfer Summer Conference, Heat Transfer: Volume 1
Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
text, January 2013
- Jain, Ankit; Yu, Ying-Ju; McGaughey, Alan J. H.
- Carnegie Mellon University
Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
text, January 2013
- Jain, Ankit; Yu, Ying-Ju; McGaughey, Alan J. H.
- Carnegie Mellon University
Coherent and Incoherent Thermal Transport in Nanomeshes
text, January 2014
- Ravichandran, Navaneetha K.; Minnich, Austin J.
- arXiv
Works referencing / citing this record:
Thermal Transport in 3D Nanostructures
journal, August 2019
- Zhan, Haifei; Nie, Yihan; Chen, Yongnan
- Advanced Functional Materials, Vol. 30, Issue 8
Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization
journal, October 2018
- Tavakoli, Adib; Lulla, Kunal; Crozes, Thierry
- Nature Communications, Vol. 9, Issue 1
Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime
journal, April 2018
- Xie, Guofeng; Ju, Zhifang; Zhou, Kuikui
- npj Computational Materials, Vol. 4, Issue 1
Electron–phonon scattering effect on the lattice thermal conductivity of silicon nanostructures
journal, January 2017
- Fu, Bo; Tang, Guihua; Li, Yifei
- Physical Chemistry Chemical Physics, Vol. 19, Issue 42
Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport
journal, January 2018
- Cui, Liu; Shi, Sanqiang; Li, Zhao
- Physical Chemistry Chemical Physics, Vol. 20, Issue 42
Impact of thermally dead volume on phonon conduction along silicon nanoladders
journal, January 2018
- Park, Woosung; Sohn, Joon; Romano, Giuseppe
- Nanoscale, Vol. 10, Issue 23
Thermal transport through fishbone silicon nanoribbons: unraveling the role of Sharvin resistance
journal, January 2019
- Yang, Lin; Zhao, Yang; Zhang, Qian
- Nanoscale, Vol. 11, Issue 17
Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires
journal, January 2020
- Qu, Xilong; Gu, Jinjie
- RSC Advances, Vol. 10, Issue 3
Investigation of thermal conduction in symmetric and asymmetric nanoporous structures
journal, December 2017
- Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho
- Journal of Applied Physics, Vol. 122, Issue 24
Modulating thermal conduction via phonon spectral coupling
journal, September 2018
- Malhotra, Abhinav; Kothari, Kartik; Maldovan, Martin
- Journal of Applied Physics, Vol. 124, Issue 12
Reevaluating the suppression function for phonon transport in nanostructures by Monte Carlo techniques
journal, January 2019
- Zeng, Yuqiang; Marconnet, Amy
- Journal of Applied Physics, Vol. 125, Issue 3
Towards ultimate impedance of phonon transport by nanostructure interface
journal, January 2019
- Ohnishi, Masato; Shiomi, Junichiro
- APL Materials, Vol. 7, Issue 1
Electron Monte Carlo simulations of nanoporous Si thin films—The influence of pore-edge charges
journal, February 2019
- Hao, Qing; Xiao, Yue
- Journal of Applied Physics, Vol. 125, Issue 6
Effects of metal silicide inclusion interface and shape on thermal transport in silicon nanocomposites
journal, July 2019
- Ferrer-Argemi, Laia; Yu, Ziqi; Lee, Jaeho
- Journal of Applied Physics, Vol. 126, Issue 3
Modeling ballistic phonon transport from a cylindrical electron beam heat source
journal, September 2019
- Wehmeyer, Geoff
- Journal of Applied Physics, Vol. 126, Issue 12
Kink as a new degree of freedom to tune the thermal conductivity of Si nanoribbons
journal, October 2019
- Yang, Lin; Zhang, Qian; Wei, Zhiyong
- Journal of Applied Physics, Vol. 126, Issue 15
Phonon and heat transport control using pillar-based phononic crystals
journal, August 2018
- Anufriev, Roman; Nomura, Masahiro
- Science and Technology of Advanced Materials, Vol. 19, Issue 1
Geometrical effect of thermal conductivity in 2D silicon films with periodic nanopores
journal, July 2018
- Zhang, Liang; Ouyang, Gang
- Journal of Physics D: Applied Physics, Vol. 51, Issue 34
TSV-integrated thermoelectric cooling by holey silicon for hot spot thermal management
journal, November 2018
- Ren, Zongqing; Yu, Ziqi; Kim, Jae Choon
- Nanotechnology, Vol. 30, Issue 3
Minimizing Coherent Thermal Conductance by Controlling the Periodicity of Two-Dimensional Phononic Crystals
journal, July 2019
- Tian, Yaolan; Puurtinen, Tuomas A.; Geng, Zhuoran
- Physical Review Applied, Vol. 12, Issue 1
Origins of significant reduction of lattice thermal conductivity in graphene allotropes
journal, October 2019
- Choudhry, Usama; Yue, Shengying; Liao, Bolin
- Physical Review B, Vol. 100, Issue 16
Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures
journal, September 2018
- Chakraborty, Dhritiman; Foster, Samuel; Neophytou, Neophytos
- Physical Review B, Vol. 98, Issue 11
Akhiezer mechanism limits coherent heat conduction in phononic crystals
journal, October 2018
- Liao, Yuxuan; Shiga, Takuma; Kashiwagi, Makoto
- Physical Review B, Vol. 98, Issue 13
Spectrally Resolved Specular Reflections of Thermal Phonons from Atomically Rough Surfaces
journal, October 2018
- Ravichandran, Navaneetha K.; Zhang, Hang; Minnich, Austin J.
- Physical Review X, Vol. 8, Issue 4
Heat conduction tuning by wave nature of phonons
journal, August 2017
- Maire, Jeremie; Anufriev, Roman; Yanagisawa, Ryoto
- Science Advances, Vol. 3, Issue 8
Radiative metasurface for thermal camouflage, illusion and messaging
journal, January 2020
- Song, Jinlin; Huang, Shiyao; Ma, Yupu
- Optics Express, Vol. 28, Issue 2
Minimizing coherent thermal conductance by controlling the periodicity of two-dimensional phononic crystals
text, January 2019
- Tian, Yaolan; Puurtinen, Tuomas A.; Geng, Zhuoran
- arXiv