skip to main content


Title: Synthesis of monodisperse CeO 2-ZrO 2 particles exhibiting cyclic superelasticity over hundreds of cycles

Nano- and microscale CeO 2–ZrO 2 (CZ) shape memory ceramics are promising materials for smart micro-electro-mechanical systems (MEMS), sensing, actuation and energy damping applications, but the processing science for scalable production of such small volume ceramics has not yet been established. Herein, we report a modified sol-gel method to synthesize highly monodisperse spherical CZ particles with diameters in the range of ~0.8-3.0 μm. Synchrotron X-ray micro-diffraction (μSXRD) confirmed that most of the particles are single crystal after annealing at 1450°C. Having a monocrystalline structure and a small specimen length scale, the particles exhibit significantly enhanced shape memory and superelasticity properties with up to ~4.7% compression being completely recoverable. Highly reproducible superelasticity through over five hundred strain cycles, with dissipated energy up to ~40 MJ/m 3 per cycle, is achieved in the CZ particles containing 16 mol% ceria. This cycling capability is enhanced by ten times compared with our first demonstration using micropillars (only 50 cycles in Lai et al, Science, 2013, 341, 1505). Furthermore, the effects of cycling and testing temperature (in 25°C-400°C) on superelasticity have been investigated.
ORCiD logo [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [1] ;  [1]
  1. Nanyang Technological Univ. (Singapore)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of the American Ceramic Society
Additional Journal Information:
Journal Volume: 100; Journal Issue: 9; Journal ID: ISSN 0002-7820
American Ceramic Society
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; CeO2-ZrO2; particles; sol-gel; shape memory; superelasticity
OSTI Identifier: