skip to main content

DOE PAGESDOE PAGES

Title: Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals

We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm –3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreement with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.
Authors:
ORCiD logo [1] ; ORCiD logo [2] ;  [2] ; ORCiD logo [3]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 5; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1379628

Ruiz Pestana, Luis, Mardirossian, Narbe, Head-Gordon, Martin, and Head-Gordon, Teresa. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals. United States: N. p., Web. doi:10.1039/c6sc04711d.
Ruiz Pestana, Luis, Mardirossian, Narbe, Head-Gordon, Martin, & Head-Gordon, Teresa. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals. United States. doi:10.1039/c6sc04711d.
Ruiz Pestana, Luis, Mardirossian, Narbe, Head-Gordon, Martin, and Head-Gordon, Teresa. 2017. "Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals". United States. doi:10.1039/c6sc04711d. https://www.osti.gov/servlets/purl/1379628.
@article{osti_1379628,
title = {Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals},
author = {Ruiz Pestana, Luis and Mardirossian, Narbe and Head-Gordon, Martin and Head-Gordon, Teresa},
abstractNote = {We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm–3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreement with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.},
doi = {10.1039/c6sc04711d},
journal = {Chemical Science},
number = 5,
volume = 8,
place = {United States},
year = {2017},
month = {2}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006
  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
journal, January 2006
  • Jurečka, Petr; Šponer, Jiří; Černý, Jiří
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 17, p. 1985-1993
  • DOI: 10.1039/B600027D

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006
  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993