DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics

Abstract

A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.

Authors:
 [1];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office
OSTI Identifier:
1379626
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 11; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; agglomerate; cathode; double trap kinetics; modeling; oxygen reduction reaction

Citation Formats

Pant, Lalit M., and Weber, Adam Z. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics. United States: N. p., 2017. Web. doi:10.1149/2.0111711jes.
Pant, Lalit M., & Weber, Adam Z. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics. United States. https://doi.org/10.1149/2.0111711jes
Pant, Lalit M., and Weber, Adam Z. Fri . "Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics". United States. https://doi.org/10.1149/2.0111711jes. https://www.osti.gov/servlets/purl/1379626.
@article{osti_1379626,
title = {Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics},
author = {Pant, Lalit M. and Weber, Adam Z.},
abstractNote = {A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.},
doi = {10.1149/2.0111711jes},
journal = {Journal of the Electrochemical Society},
number = 11,
volume = 164,
place = {United States},
year = {Fri Apr 14 00:00:00 EDT 2017},
month = {Fri Apr 14 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effectiveness factors for general reaction rate forms
journal, March 1965


Improving the Accuracy of Predicting Effectiveness Factors for m th Order and Langmuir Rate Equations in Spherical Coordinates
journal, May 2000

  • Hong, Jianhui; Hecker, William C.; Fletcher, Thomas H.
  • Energy & Fuels, Vol. 14, Issue 3
  • DOI: 10.1021/ef9902193

An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters
journal, May 2005


Mass Transport in Gas-Diffusion Electrodes: A Diagnostic Tool for Fuel-Cell Cathodes
journal, January 1998

  • Perry, Mike L.
  • Journal of The Electrochemical Society, Vol. 145, Issue 1
  • DOI: 10.1149/1.1838202

Understanding the Effect of Kinetic and Mass Transport Processes in Cathode Agglomerates
journal, January 2014

  • Moore, M.; Wardlaw, P.; Dobson, P.
  • Journal of The Electrochemical Society, Vol. 161, Issue 8
  • DOI: 10.1149/2.010408jes

Single domain PEMFC model based on agglomerate catalyst geometry
journal, March 2003


Sensitivity of PEFC Models to Cathode Layer Microstructure
journal, January 2010

  • Jain, Parag; Biegler, Lorenz T.; Jhon, Myung S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3454725

Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation
journal, January 1992

  • Parthasarathy, Arvind
  • Journal of The Electrochemical Society, Vol. 139, Issue 9
  • DOI: 10.1149/1.2221258

On shape factors for irregular particles—I
journal, January 1957


The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Model
journal, January 1969

  • Giner, J.; Hunter, C.
  • Journal of The Electrochemical Society, Vol. 116, Issue 8
  • DOI: 10.1149/1.2412232

Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC
journal, January 2006

  • Neyerlin, K. C.; Gu, Wenbin; Jorne, Jacob
  • Journal of The Electrochemical Society, Vol. 153, Issue 10
  • DOI: 10.1149/1.2266294

Multi-variable optimization of PEMFC cathodes using an agglomerate model
journal, June 2007


Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers
journal, January 2011

  • Yoon, Wonseok; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8
  • DOI: 10.1149/1.3597644

Analysis of Inkjet Printed PEFC Electrodes with Varying Platinum Loading
journal, January 2016

  • Shukla, S.; Stanier, D.; Saha, M. S.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1111607jes

Performance measurements and modelling of the ORR on fuel cell electrocatalysts – the modified double trap model
journal, October 2015


Understanding Impacts of Catalyst-Layer Thickness on Fuel-Cell Performance via Mathematical Modeling
journal, January 2016

  • Zenyuk, Iryna V.; Das, Prodip K.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1161607jes

Double-Trap Kinetic Equation for the Oxygen Reduction Reaction on Pt(111) in Acidic Media
journal, December 2007

  • Wang, Jia X.; Zhang, Junliang; Adzic, Radoslav R.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 49, p. 12702-12710
  • DOI: 10.1021/jp076104e

Investigation of the ORR Using the Double-Trap Intrinsic Kinetic Model
journal, January 2013

  • Moore, M.; Putz, A.; Secanell, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.123306jes

Works referencing / citing this record:

Modeling Air Electrodes with Low Platinum Loading
journal, January 2019

  • Darling, Robert
  • Journal of The Electrochemical Society, Vol. 166, Issue 7
  • DOI: 10.1149/2.0101907jes

Through-the-Membrane Transient Phenomena in PEM Fuel Cells: A Modeling Study
journal, January 2019

  • Goshtasbi, Alireza; García-Salaberri, Pablo; Chen, Jixin
  • Journal of The Electrochemical Society, Vol. 166, Issue 7
  • DOI: 10.1149/2.0181907jes

The Butler-Volmer Equation for Polymer Electrolyte Membrane Fuel Cell (PEMFC) Electrode Kinetics: A Critical Discussion
journal, January 2019

  • Dickinson, Edmund J. F.; Hinds, Gareth
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0361904jes

A Comparison of Models for Transport Resistance in Fuel-Cell Catalyst Layers
journal, January 2018

  • Darling, Robert
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0881816jes

A Hierarchical Model for Oxygen Transport in Agglomerates in the Cathode Catalyst Layer of a Polymer-Electrolyte Fuel Cell
journal, January 2018

  • Darling, Robert M.
  • Journal of The Electrochemical Society, Vol. 165, Issue 9
  • DOI: 10.1149/2.1231807jes