skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

Abstract

Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.

Authors:
 [1];  [2];  [3];  [4];  [2];  [2];  [5];  [2];  [6];  [7];  [6];  [6];  [4];  [4];  [2];  [8];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Chemical Sciences Division
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Chemical Sciences Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis; Technical Univ. of Munich (Germany). Walter Schottky Inst. and Physics Dept.
  4. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry, Materials Sciences Division
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Materials Sciences Division
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Energy Technologies Area; Univ. of California, Berkeley, CA (United States). Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1379503
Grant/Contract Number:  
AC02-05CH11231; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; photocatalysis; photochemistry; physical chemistry

Citation Formats

Toma, Francesca M., Cooper, Jason K., Kunzelmann, Viktoria, McDowell, Matthew T., Yu, Jie, Larson, David M., Borys, Nicholas J., Abelyan, Christine, Beeman, Jeffrey W., Yu, Kin Man, Yang, Jinhui, Chen, Le, Shaner, Matthew R., Spurgeon, Joshua, Houle, Frances A., Persson, Kristin A., and Sharp, Ian D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. United States: N. p., 2016. Web. doi:10.1038/ncomms12012.
Toma, Francesca M., Cooper, Jason K., Kunzelmann, Viktoria, McDowell, Matthew T., Yu, Jie, Larson, David M., Borys, Nicholas J., Abelyan, Christine, Beeman, Jeffrey W., Yu, Kin Man, Yang, Jinhui, Chen, Le, Shaner, Matthew R., Spurgeon, Joshua, Houle, Frances A., Persson, Kristin A., & Sharp, Ian D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. United States. doi:10.1038/ncomms12012.
Toma, Francesca M., Cooper, Jason K., Kunzelmann, Viktoria, McDowell, Matthew T., Yu, Jie, Larson, David M., Borys, Nicholas J., Abelyan, Christine, Beeman, Jeffrey W., Yu, Kin Man, Yang, Jinhui, Chen, Le, Shaner, Matthew R., Spurgeon, Joshua, Houle, Frances A., Persson, Kristin A., and Sharp, Ian D. Tue . "Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes". United States. doi:10.1038/ncomms12012. https://www.osti.gov/servlets/purl/1379503.
@article{osti_1379503,
title = {Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes},
author = {Toma, Francesca M. and Cooper, Jason K. and Kunzelmann, Viktoria and McDowell, Matthew T. and Yu, Jie and Larson, David M. and Borys, Nicholas J. and Abelyan, Christine and Beeman, Jeffrey W. and Yu, Kin Man and Yang, Jinhui and Chen, Le and Shaner, Matthew R. and Spurgeon, Joshua and Houle, Frances A. and Persson, Kristin A. and Sharp, Ian D.},
abstractNote = {Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.},
doi = {10.1038/ncomms12012},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 72 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spatial Mapping of Efficiency of GaN/InGaN Nanowire Array Solar Cells Using Scanning Photocurrent Microscopy
journal, October 2013

  • Howell, Sarah L.; Padalkar, Sonal; Yoon, KunHo
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402331u

Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes
journal, January 2011

  • Jeon, Tae Hwa; Choi, Wonyong; Park, Hyunwong
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 48
  • DOI: 10.1039/c1cp23135a

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states
journal, June 2012


Robust production of purified H 2 in a stable, self-regulating, and continuously operating solar fuel generator
journal, January 2014

  • Modestino, Miguel A.; Walczak, Karl A.; Berger, Alan
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE43214A

Net primary energy balance of a solar-driven photoelectrochemical water-splitting device
journal, January 2013

  • Zhai, Pei; Haussener, Sophia; Ager, Joel
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40880a

Projector augmented-wave method
journal, December 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias
journal, January 2013

  • Ding, Chunmei; Shi, Jingying; Wang, Donge
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp50295c

Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution
journal, September 2012

  • Chen, Shiyou; Wang, Lin-Wang
  • Chemistry of Materials, Vol. 24, Issue 18
  • DOI: 10.1021/cm302533s

Progress in bismuth vanadate photoanodes for use in solar water oxidation
journal, January 2013

  • Park, Yiseul; McDonald, Kenneth J.; Choi, Kyoung-Shin
  • Chem. Soc. Rev., Vol. 42, Issue 6, p. 2321-2337
  • DOI: 10.1039/C2CS35260E

Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO 2 /Ni Coatings
journal, August 2014

  • McDowell, Matthew T.; Lichterman, Michael F.; Spurgeon, Joshua M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506133y

Data Mined Ionic Substitutions for the Discovery of New Compounds
journal, January 2011

  • Hautier, Geoffroy; Fischer, Chris; Ehrlacher, Virginie
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102031h

Will Solar-Driven Water-Splitting Devices See the Light of Day?
journal, September 2013

  • McKone, James R.; Lewis, Nathan S.; Gray, Harry B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4021518

Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition
journal, November 2013

  • Lichterman, Michael F.; Shaner, Matthew R.; Handler, Sheila G.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 23
  • DOI: 10.1021/jz4022415

Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis
journal, April 2013

  • Sivula, Kevin
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 10
  • DOI: 10.1021/jz4002983

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO 4
journal, November 2011

  • Zhong, Diane K.; Choi, Sujung; Gamelin, Daniel R.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207348x

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

Crystal growth and structure of BiVO4
journal, December 1979


Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
journal, February 2014


Interfacial band-edge energetics for solar fuels production
journal, January 2015

  • Smith, Wilson A.; Sharp, Ian D.; Strandwitz, Nicholas C.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE01822F

Identifying champion nanostructures for solar water-splitting
journal, July 2013

  • Warren, Scott C.; Voïtchovsky, Kislon; Dotan, Hen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3684

A high-throughput infrastructure for density functional theory calculations
journal, June 2011


Semiconductor Electrodes
journal, January 1977

  • Hardee, Kenneth L.
  • Journal of The Electrochemical Society, Vol. 124, Issue 2
  • DOI: 10.1149/1.2133269

Marked enhancement in electron–hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO 4 photoanodes
journal, January 2014

  • Park, Yiseul; Kang, Donghyeon; Choi, Kyoung-Shin
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 3
  • DOI: 10.1039/C3CP53649A

Photocatalytic Water Splitting: Recent Progress and Future Challenges
journal, September 2010

  • Maeda, Kazuhiko; Domen, Kazunari
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 18, p. 2655-2661
  • DOI: 10.1021/jz1007966

Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst
journal, January 2012

  • Seabold, Jason A.; Choi, Kyoung-Shin
  • Journal of the American Chemical Society, Vol. 134, Issue 4, p. 2186-2192
  • DOI: 10.1021/ja209001d

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Electronic Structure of Monoclinic BiVO 4
journal, September 2014

  • Cooper, Jason K.; Gul, Sheraz; Toma, Francesca M.
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm5025074

Efficient BiVO 4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping
journal, November 2012

  • Abdi, Fatwa F.; Firet, Nienke; van de Krol, Roel
  • ChemCatChem, Vol. 5, Issue 2
  • DOI: 10.1002/cctc.201200472

Mo-Doped BiVO 4 Photoanodes Synthesized by Reactive Sputtering
journal, February 2015


Investigation of Arrays of Photosynthetically Active Heterostructures Using Conductive Probe Atomic Force Microscopy
journal, May 2014

  • Economou, Nicholas J.; Mubeen, Syed; Buratto, Steven K.
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500754q

Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate
journal, January 2015

  • Cooper, Jason K.; Gul, Sheraz; Toma, Francesca M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp512169w

Structural phase-dependent hole localization and transport in bismuth vanadate
journal, May 2013