DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes

Abstract

Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.

Authors:
 [1];  [1];  [2];  [2];  [3];  [4];  [5];  [5];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of Pittsburgh, PA (United States)
  4. Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain)
  5. Univ. of Puerto Rico, San Juan, PR (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
National Institutes of Health (NIH); USDOE
OSTI Identifier:
1379313
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Human Molecular Genetics
Additional Journal Information:
Journal Volume: 25; Journal Issue: 9; Journal ID: ISSN 0964-6906
Publisher:
Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES

Citation Formats

Polyzos, Aris, Holt, Amy, Brown, Christopher, Cosme, Celica, Wipf, Peter, Gomez-Marin, Alex, Castro, Maríadel R., Ayala-Peña, Sylvette, and McMurray, Cynthia T. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. United States: N. p., 2016. Web. doi:10.1093/hmg/ddw051.
Polyzos, Aris, Holt, Amy, Brown, Christopher, Cosme, Celica, Wipf, Peter, Gomez-Marin, Alex, Castro, Maríadel R., Ayala-Peña, Sylvette, & McMurray, Cynthia T. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. United States. https://doi.org/10.1093/hmg/ddw051
Polyzos, Aris, Holt, Amy, Brown, Christopher, Cosme, Celica, Wipf, Peter, Gomez-Marin, Alex, Castro, Maríadel R., Ayala-Peña, Sylvette, and McMurray, Cynthia T. Sun . "Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes". United States. https://doi.org/10.1093/hmg/ddw051. https://www.osti.gov/servlets/purl/1379313.
@article{osti_1379313,
title = {Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes},
author = {Polyzos, Aris and Holt, Amy and Brown, Christopher and Cosme, Celica and Wipf, Peter and Gomez-Marin, Alex and Castro, Maríadel R. and Ayala-Peña, Sylvette and McMurray, Cynthia T.},
abstractNote = {Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.},
doi = {10.1093/hmg/ddw051},
journal = {Human Molecular Genetics},
number = 9,
volume = 25,
place = {United States},
year = {Sun Feb 21 00:00:00 EST 2016},
month = {Sun Feb 21 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Alzheimer Mechanisms and Therapeutic Strategies
journal, March 2012


Antioxidants in Huntington's disease
journal, May 2012

  • Johri, Ashu; Beal, M. Flint
  • Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Vol. 1822, Issue 5
  • DOI: 10.1016/j.bbadis.2011.11.014

Abnormalities in the Tricarboxylic Acid Cycle in Huntington Disease and in a Huntington Disease Mouse Model
journal, June 2015

  • Naseri, Nima N.; Xu, Hui; Bonica, Joseph
  • Journal of Neuropathology & Experimental Neurology, Vol. 74, Issue 6
  • DOI: 10.1097/NEN.0000000000000197

Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging?
journal, January 2012

  • Desler, Claus; Hansen, Thomas Lau; Frederiksen, Jane Bruun
  • Journal of Aging Research, Vol. 2012
  • DOI: 10.1155/2012/192503

Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
journal, February 2011

  • Song, Wenjun; Chen, Jin; Petrilli, Alejandra
  • Nature Medicine, Vol. 17, Issue 3
  • DOI: 10.1038/nm.2313

Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro
journal, September 2004


Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration
journal, November 2006


Mitochondrial Diseases of the Brain
journal, October 2013


Effects of coenzyme Q10 administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat
journal, September 2002


Clinical aspects of coenzyme Q10: An update
journal, March 2010


A Randomized Clinical Trial of High-Dosage Coenzyme Q10 in Early Parkinson Disease: No Evidence of Benefit
journal, May 2014


Creatine Increases Survival and Delays Motor Symptoms in a Transgenic Animal Model of Huntington's Disease
journal, June 2001

  • Andreassen, Ole A.; Dedeoglu, Alpaslan; Ferrante, Robert J.
  • Neurobiology of Disease, Vol. 8, Issue 3
  • DOI: 10.1006/nbdi.2001.0406

Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice: Creatine therapy in Huntington's disease
journal, April 2003


Creatine supplementation in Parkinson disease: A placebo-controlled randomized pilot trial
journal, October 2006


Mitochondria‐targeted antioxidants
journal, August 2015

  • Oyewole, Anne O.; Birch‐Machin, Mark A.
  • The FASEB Journal, Vol. 29, Issue 12
  • DOI: 10.1096/fj.15-275404

Evaluation of cytotoxicity of oils used in coenzyme Q10 Self-Emulsifying Drug Delivery Systems (SEDDS)
journal, April 2004


Targeting Mitochondrial Dysfunction and Neurodegeneration by Means of Coenzyme Q10 and its Analogues
journal, September 2011


Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice
journal, May 2004


Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism: Coenzyme Q10 and MPTP
journal, October 2007


Therapeutic advances in Huntington's Disease: Therapeutic Advances in HD
journal, July 2015

  • Shannon, Kathleen M.; Fraint, Avram
  • Movement Disorders, Vol. 30, Issue 11
  • DOI: 10.1002/mds.26331

Coenzyme Q, oxidative stress and aging
journal, June 2007


Co-Enzyme Q10 to Treat Neurological Disorders: Basic Mechanisms, Clinical Outcomes, and Future Research Direction
journal, July 2013

  • Salama, Mohamed; Yuan, Ti-Fei; Machado, Sergio
  • CNS & Neurological Disorders - Drug Targets, Vol. 12, Issue 5
  • DOI: 10.2174/18715273113129990071

Prolonged Intake of Coenzyme Q10 Impairs Cognitive Functions in Mice
journal, August 2009

  • Sumien, Nathalie; Heinrich, Kevin R.; Shetty, Ritu A.
  • The Journal of Nutrition, Vol. 139, Issue 10
  • DOI: 10.3945/jn.109.110437

A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease
journal, June 2010

  • Snow, Barry J.; Rolfe, Fiona L.; Lockhart, Michelle M.
  • Movement Disorders, Vol. 25, Issue 11
  • DOI: 10.1002/mds.23148

Oral Coenzyme Q10 Supplementation in Patients with Nonalcoholic Fatty Liver Disease: Effects on Serum Vaspin, Chemerin, Pentraxin 3, Insulin Resistance and Oxidative Stress
journal, October 2014

  • Farhangi, Mahdieh Abbasalizad; Alipour, Beytollah; Jafarvand, Elnaz
  • Archives of Medical Research, Vol. 45, Issue 7
  • DOI: 10.1016/j.arcmed.2014.11.001

Mitochondria‐targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants
journal, August 2003

  • Jauslin, Matthias L.; Meier, Thomas; Smith, Robin A. J.
  • The FASEB Journal, Vol. 17, Issue 13
  • DOI: 10.1096/fj.03-0240fje

Hemigramicidin-TEMPO conjugates: Novel mitochondria-targeted antioxidants
journal, January 2007


Mitochondrial Targeting of Selective Electron Scavengers:  Synthesis and Biological Analysis of Hemigramicidin−TEMPO Conjugates
journal, September 2005

  • Wipf, Peter; Xiao, Jingbo; Jiang, Jianfei
  • Journal of the American Chemical Society, Vol. 127, Issue 36
  • DOI: 10.1021/ja053679l

Targeting Mitochondria
journal, January 2008

  • Hoye, Adam T.; Davoren, Jennifer E.; Wipf, Peter
  • Accounts of Chemical Research, Vol. 41, Issue 1
  • DOI: 10.1021/ar700135m

Neurological abnormalities in a knock-in mouse model of Huntington's disease
journal, January 2001


Huntington Disease
journal, January 1998


Neuropathological Classification of Huntingtonʼs Disease
journal, January 1985

  • Vonsattel, Jean-Paul; Myers, Richard H.; Stevens, Thomas J.
  • Journal of Neuropathology and Experimental Neurology, Vol. 44, Issue 6
  • DOI: 10.1097/00005072-198511000-00003

Huntington's disease knock-in male mice show specific anxiety-like behaviour and altered neuronal maturation
journal, January 2012


Targeting of XJB-5-131 to Mitochondria Suppresses Oxidative DNA Damage and Motor Decline in a Mouse Model of Huntington’s Disease
journal, November 2012


Characterization of Hydantoin Products from One-Electron Oxidation of 8-Oxo-7,8-dihydroguanosine in a Nucleoside Model
journal, July 2001

  • Luo, Wenchen; Muller, James G.; Rachlin, Elliot M.
  • Chemical Research in Toxicology, Vol. 14, Issue 7
  • DOI: 10.1021/tx010072j

Formation and repair of oxidative damage in the mitochondrial DNA
journal, July 2014


Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington’s Disease
journal, August 2015


Superoxide Dismutases and Superoxide Reductases
journal, January 2014

  • Sheng, Yuewei; Abreu, Isabel A.; Cabelli, Diane E.
  • Chemical Reviews, Vol. 114, Issue 7
  • DOI: 10.1021/cr4005296

Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury
journal, August 2012

  • Ji, Jing; Kline, Anthony E.; Amoscato, Andrew
  • Nature Neuroscience, Vol. 15, Issue 10
  • DOI: 10.1038/nn.3195

Treatment With a Novel Hemigramicidin-TEMPO Conjugate Prolongs Survival in a Rat Model of Lethal Hemorrhagic Shock
journal, January 2007


Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats
journal, December 2014

  • Escobales, Nelson; Nuñez, Rebeca E.; Jang, Sehwan
  • Journal of Molecular and Cellular Cardiology, Vol. 77
  • DOI: 10.1016/j.yjmcc.2014.10.009

Current and Future Public Health Challenges
journal, October 2000


Sustained Therapeutic Reversal of Huntington's Disease by Transient Repression of Huntingtin Synthesis
journal, June 2012


Allylic Amines as Key Building Blocks in the Synthesis of ( E )-Alkene Peptide Isosteres
journal, November 2011

  • Skoda, Erin M.; Davis, Gary C.; Wipf, Peter
  • Organic Process Research & Development, Vol. 16, Issue 1
  • DOI: 10.1021/op2002613

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Automated Tracking of Animal Posture and Movement during Exploration and Sensory Orientation Behaviors
journal, August 2012


Analysis of Gene-Specific DNA Damage and Repair Using Quantitative Polymerase Chain Reaction
journal, October 2000

  • Ayala-Torres, Sylvette; Chen, Yiminig; Svoboda, Tamara
  • Methods, Vol. 22, Issue 2
  • DOI: 10.1006/meth.2000.1054

Mitochondrial DNA damage Is associated with reduced mitochondrial bioenergetics in Huntington's disease
journal, October 2012


Works referencing / citing this record:

R-loops: targets for nuclease cleavage and repeat instability
journal, January 2018


N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation
journal, July 2018

  • Bowie, Laura E.; Maiuri, Tamara; Alpaugh, Melanie
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 30
  • DOI: 10.1073/pnas.1801772115

The interaction of aging and oxidative stress contributes to pathogenesis in mouse and human Huntington disease neurons
posted_content, December 2019

  • Machiela, Emily; Jeloka, Ritika; Caron, Nicholas S.
  • bioRxiv
  • DOI: 10.1101/800268

Hepatic HKDC1 Expression Contributes to Liver Metabolism
journal, December 2018

  • Pusec, Carolina M.; De Jesus, Adam; Khan, Md Wasim
  • Endocrinology, Vol. 160, Issue 2
  • DOI: 10.1210/en.2018-00887

A Mitochondria-Associated Oxidative Stress Perspective on Huntington’s Disease
journal, September 2018

  • Zheng, Ju; Winderickx, Joris; Franssens, Vanessa
  • Frontiers in Molecular Neuroscience, Vol. 11
  • DOI: 10.3389/fnmol.2018.00329

Impaired Redox Signaling in Huntington’s Disease: Therapeutic Implications
journal, March 2019


XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington's disease is age- and sex- dependent.
text, January 2018

  • Polyzos, Aris A.; Wood, Nigel; Williams, Paul
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.27355

XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington's disease is age- and sex- dependent.
text, January 2018

  • Polyzos, Aris A.; Wood, Nigel; Williams, Paul
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.27355

Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly
journal, October 2016

  • Kumar, Amit; Ratan, Rajiv R.
  • Journal of Huntington's Disease, Vol. 5, Issue 3
  • DOI: 10.3233/jhd-160205