skip to main content

DOE PAGESDOE PAGES

Title: Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.
Authors:
 [1] ;  [2] ;  [3] ;  [1] ;  [4] ;  [5] ;  [6]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Energy Storage Research
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
  4. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry
  5. Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical and Biomolecular Engineering
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Energy Storage Research; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Grant/Contract Number:
AC02-05CH11231; AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 113; Journal Issue: 1; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; hybrid electrolytes; inorganic sulfide glasses; fluorinated polymers; lithium batteries; lithium-sulfur batteries
OSTI Identifier:
1379024