DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-density grids for efficient data collection from multiple crystals

Abstract

Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusionmore » and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [1];  [4];  [2];  [5];  [6];  [7];  [7];  [8];  [9];  [4];  [4];  [10];  [1];  [4];  [4] more »;  [1];  [3];  [11];  [1];  [1];  [7];  [1];  [4];  [7];  [6];  [6];  [8];  [1] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States)
  3. Art Robbins Instruments, Sunnyvale, CA (United States)
  4. Stanford Univ., Stanford, CA (United States)
  5. Monash Univ., Melbourne, Victoria (Australia); Australian Synchrotron, Clayton, Melbourne, Victoria (Australia)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. Univ. of California, San Francisco, CA (United States)
  8. Humboldt-Univ. zu Berlin, Berlin (Germany)
  9. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  10. Stanford Univ. School of Medicine, Stanford, CA (United States)
  11. Monash Univ., Melbourne, Victoria (Australia)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1234705
Alternate Identifier(s):
OSTI ID: 1379000
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Acta Crystallographica. Section D. Structural Biology
Additional Journal Information:
Journal Volume: 72; Journal Issue: 1; Journal ID: ISSN 2059-7983
Publisher:
IUCr
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; XFELs; high-throughput crystallography; serial crystallography; sample delivery; automation for sample-exchange robots

Citation Formats

Baxter, Elizabeth L., Aguila, Laura, Alonso-Mori, Roberto, Barnes, Christopher O., Bonagura, Christopher A., Brehmer, Winnie, Brunger, Axel T., Calero, Guillermo, Caradoc-Davies, Tom T., Chatterjee, Ruchira, Degrado, William F., Fraser, James S., Ibrahim, Mohamed, Kern, Jan, Kobilka, Brian K., Kruse, Andrew C., Larsson, Karl M., Lemke, Heinrik T., Lyubimov, Artem Y., Manglik, Aashish, McPhillips, Scott E., Norgren, Erik, Pang, Siew S., Soltis, S. M., Song, Jinhu, Thomaston, Jessica, Tsai, Yingssu, Weis, William I., Woldeyes, Rahel A., Yachandra, Vittal, Yano, Junko, Zouni, Athina, and Cohen, Aina E. High-density grids for efficient data collection from multiple crystals. United States: N. p., 2015. Web. doi:10.1107/S2059798315020847.
Baxter, Elizabeth L., Aguila, Laura, Alonso-Mori, Roberto, Barnes, Christopher O., Bonagura, Christopher A., Brehmer, Winnie, Brunger, Axel T., Calero, Guillermo, Caradoc-Davies, Tom T., Chatterjee, Ruchira, Degrado, William F., Fraser, James S., Ibrahim, Mohamed, Kern, Jan, Kobilka, Brian K., Kruse, Andrew C., Larsson, Karl M., Lemke, Heinrik T., Lyubimov, Artem Y., Manglik, Aashish, McPhillips, Scott E., Norgren, Erik, Pang, Siew S., Soltis, S. M., Song, Jinhu, Thomaston, Jessica, Tsai, Yingssu, Weis, William I., Woldeyes, Rahel A., Yachandra, Vittal, Yano, Junko, Zouni, Athina, & Cohen, Aina E. High-density grids for efficient data collection from multiple crystals. United States. https://doi.org/10.1107/S2059798315020847
Baxter, Elizabeth L., Aguila, Laura, Alonso-Mori, Roberto, Barnes, Christopher O., Bonagura, Christopher A., Brehmer, Winnie, Brunger, Axel T., Calero, Guillermo, Caradoc-Davies, Tom T., Chatterjee, Ruchira, Degrado, William F., Fraser, James S., Ibrahim, Mohamed, Kern, Jan, Kobilka, Brian K., Kruse, Andrew C., Larsson, Karl M., Lemke, Heinrik T., Lyubimov, Artem Y., Manglik, Aashish, McPhillips, Scott E., Norgren, Erik, Pang, Siew S., Soltis, S. M., Song, Jinhu, Thomaston, Jessica, Tsai, Yingssu, Weis, William I., Woldeyes, Rahel A., Yachandra, Vittal, Yano, Junko, Zouni, Athina, and Cohen, Aina E. Tue . "High-density grids for efficient data collection from multiple crystals". United States. https://doi.org/10.1107/S2059798315020847. https://www.osti.gov/servlets/purl/1234705.
@article{osti_1234705,
title = {High-density grids for efficient data collection from multiple crystals},
author = {Baxter, Elizabeth L. and Aguila, Laura and Alonso-Mori, Roberto and Barnes, Christopher O. and Bonagura, Christopher A. and Brehmer, Winnie and Brunger, Axel T. and Calero, Guillermo and Caradoc-Davies, Tom T. and Chatterjee, Ruchira and Degrado, William F. and Fraser, James S. and Ibrahim, Mohamed and Kern, Jan and Kobilka, Brian K. and Kruse, Andrew C. and Larsson, Karl M. and Lemke, Heinrik T. and Lyubimov, Artem Y. and Manglik, Aashish and McPhillips, Scott E. and Norgren, Erik and Pang, Siew S. and Soltis, S. M. and Song, Jinhu and Thomaston, Jessica and Tsai, Yingssu and Weis, William I. and Woldeyes, Rahel A. and Yachandra, Vittal and Yano, Junko and Zouni, Athina and Cohen, Aina E.},
abstractNote = {Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.},
doi = {10.1107/S2059798315020847},
journal = {Acta Crystallographica. Section D. Structural Biology},
number = 1,
volume = 72,
place = {United States},
year = {Tue Nov 03 00:00:00 EST 2015},
month = {Tue Nov 03 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Goniometer-based femtosecond crystallography with X-ray free electron lasers
journal, October 2014

  • Cohen, Aina E.; Soltis, S. Michael; González, Ana
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 48, p. 17122-17127
  • DOI: 10.1073/pnas.1418733111

Native-like Photosystem II Superstructure at 2.44 Å Resolution through Detergent Extraction from the Protein Crystal
journal, November 2014


ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature
journal, July 2013

  • Pinker, Franziska; Brun, Mathieu; Morin, Pierre
  • Crystal Growth & Design, Vol. 13, Issue 8
  • DOI: 10.1021/cg301757g

Proteome-scale purification of human proteins from bacteria
journal, March 2002

  • Braun, P.; Hu, Y.; Shen, B.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 5
  • DOI: 10.1073/pnas.042684199

Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis
journal, January 2009

  • Dhouib, Kaouthar; Khan Malek, Chantal; Pfleging, Wilhelm
  • Lab on a Chip, Vol. 9, Issue 10
  • DOI: 10.1039/b819362b

High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
journal, May 2012


Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy
journal, July 2014

  • Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5371

Lipidic phase membrane protein serial femtosecond crystallography
journal, January 2012

  • Johansson, Linda C.; Arnlund, David; White, Thomas A.
  • Nature Methods, Vol. 9, Issue 3
  • DOI: 10.1038/nmeth.1867

High-throughput crystallography for lead discovery in drug design
journal, January 2002

  • Blundell, Tom L.; Jhoti, Harren; Abell, Chris
  • Nature Reviews Drug Discovery, Vol. 1, Issue 1
  • DOI: 10.1038/nrd706

The structural basis for membrane binding and pore formation by lymphocyte perforin
journal, October 2010

  • Law, Ruby H. P.; Lukoyanova, Natalya; Voskoboinik, Ilia
  • Nature, Vol. 468, Issue 7322
  • DOI: 10.1038/nature09518

An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot
journal, November 2002

  • Cohen, Aina E.; Ellis, Paul J.; Miller, Mitchell D.
  • Journal of Applied Crystallography, Vol. 35, Issue 6
  • DOI: 10.1107/S0021889802016709

Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
journal, February 2013


Crystallizing membrane proteins using lipidic mesophases
journal, April 2009


A fast, simple and robust protocol for growing crystals in the lipidic cubic phase
journal, October 2012

  • Aherne, Margaret; Lyons, Joseph A.; Caffrey, Martin
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812037880

Crystallographic and Single-Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate
journal, April 2010

  • Meharenna, Yergalem T.; Doukov, Tzanko; Li, Huiying
  • Biochemistry, Vol. 49, Issue 14
  • DOI: 10.1021/bi100238r

Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Automated detection and centring of cryocooled protein crystals
journal, October 2006

  • Pothineni, Sudhir Babu; Strutz, Tilo; Lamzin, Victor S.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 11
  • DOI: 10.1107/S0907444906031672

Kinetic Modeling of the X-ray-Induced Damage to a Metalloprotein
journal, July 2013

  • Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 31
  • DOI: 10.1021/jp403654n

Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array
journal, March 2015

  • Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine
  • Acta Crystallographica Section D Biological Crystallography, Vol. 71, Issue 4
  • DOI: 10.1107/S1399004715002308

Serial Femtosecond Crystallography of G Protein-Coupled Receptors
journal, December 2013


Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam
journal, June 2009

  • Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.
  • Journal of The Royal Society Interface, Vol. 6, Issue suppl_5
  • DOI: 10.1098/rsif.2009.0142.focus

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
journal, December 2011


Diffraction-based automated crystal centering
journal, February 2007

  • Song, Jinhu; Mathew, Deepa; Jacob, Sandhya A.
  • Journal of Synchrotron Radiation, Vol. 14, Issue 2, p. 191-195
  • DOI: 10.1107/S0909049507004803

Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
journal, December 2011


De novo protein crystal structure determination from X-ray free-electron laser data
journal, November 2013

  • Barends, Thomas R. M.; Foucar, Lutz; Botha, Sabine
  • Nature, Vol. 505, Issue 7482
  • DOI: 10.1038/nature12773

Room temperature femtosecond X-ray diffraction of photosystem II microcrystals
journal, June 2012

  • Kern, J.; Alonso-Mori, R.; Hellmich, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 25, p. 9721-9726
  • DOI: 10.1073/pnas.1204598109

Crystal structure of the β2 adrenergic receptor–Gs protein complex
journal, July 2011

  • Rasmussen, Søren G. F.; DeVree, Brian T.; Zou, Yaozhong
  • Nature, Vol. 477, Issue 7366
  • DOI: 10.1038/nature10361

High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids
journal, February 2004


REACH: Robotic Equipment for Automated Crystal Harvesting using a six-axis robot arm and a micro-gripper
journal, February 2013

  • Heidari Khajepour, Mohammad Yaser; Vernede, Xavier; Cobessi, David
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 3
  • DOI: 10.1107/S0907444912048019

X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography
journal, August 2005

  • Yano, J.; Kern, J.; Irrgang, K. -D.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 34
  • DOI: 10.1073/pnas.0505207102

Are you centered? An automatic crystal-centering method for high-throughput macromolecular crystallography
journal, June 2007


Automated Sample Mounting and Alignment System for Biological Crystallography at a Synchrotron Source
journal, April 2004


Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
journal, March 2015


Protein crystal harvesting using the RodBot: a wireless mobile microrobot
journal, March 2014

  • Tung, Hsi-Wen; Sargent, David F.; Nelson, Bradley J.
  • Journal of Applied Crystallography, Vol. 47, Issue 2
  • DOI: 10.1107/S1600576714004403

A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering
journal, May 2015

  • Roedig, P.; Vartiainen, I.; Duman, R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10451

Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments
journal, August 2013

  • Baba, Seiki; Hoshino, Takeshi; Ito, Len
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 9
  • DOI: 10.1107/S0907444913018027

Use of transmission electron microscopy to identify nanocrystals of challenging protein targets
journal, May 2014

  • Stevenson, H. P.; Makhov, A. M.; Calero, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1400240111

Blu-Ice and the Distributed Control System : software for data acquisition and instrument control at macromolecular crystallography beamlines
journal, November 2002

  • McPhillips, Timothy M.; McPhillips, Scott E.; Chiu, Hsiu-Ju
  • Journal of Synchrotron Radiation, Vol. 9, Issue 6
  • DOI: 10.1107/S0909049502015170

X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection
journal, May 2011

  • Kisselman, Gera; Qiu, Wei; Romanov, Vladimir
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 6
  • DOI: 10.1107/S0907444911011589

A general path for large-scale solubilization of cellular proteins: From membrane receptors to multiprotein complexes
journal, February 2013

  • Pullara, Filippo; Guerrero-Santoro, Jennifer; Calero, Monica
  • Protein Expression and Purification, Vol. 87, Issue 2
  • DOI: 10.1016/j.pep.2012.10.007

Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008

  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505

Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
journal, November 2012


Nanoflow electrospinning serial femtosecond crystallography
journal, October 2012

  • Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 11, p. 1584-1587
  • DOI: 10.1107/S0907444912038152

Structural genomics projects in Japan
journal, June 2000

  • Yokoyama, Shigeyuki; Matsuo, Yo; Hirota, Hiroshi
  • Progress in Biophysics and Molecular Biology, Vol. 73, Issue 5
  • DOI: 10.1016/s0079-6107(00)00012-2

Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
text, January 2015


Works referencing / citing this record:

Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
journal, February 2017

  • Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira
  • Nature Methods, Vol. 14, Issue 4
  • DOI: 10.1038/nmeth.4195

High-speed fixed-target serial virus crystallography
journal, June 2017

  • Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim
  • Nature Methods, Vol. 14, Issue 8
  • DOI: 10.1038/nmeth.4335

Nylon mesh-based sample holder for fixed-target serial femtosecond crystallography
journal, May 2019


Graphene-based microfluidics for serial crystallography
journal, January 2016

  • Sui, Shuo; Wang, Yuxi; Kolewe, Kristopher W.
  • Lab on a Chip, Vol. 16, Issue 16
  • DOI: 10.1039/c6lc00451b

On-demand sample injection: combining acoustic actuation with a tear-drop shaped nozzle to generate droplets with precise spatial and temporal control
journal, January 2020

  • Brenker, Jason C.; Devendran, Citsabehsan; Neild, Adrian
  • Lab on a Chip, Vol. 20, Issue 2
  • DOI: 10.1039/c9lc00837c

Microfluidics: From crystallization to serial time-resolved crystallography
journal, May 2017

  • Sui, Shuo; Perry, Sarah L.
  • Structural Dynamics, Vol. 4, Issue 3
  • DOI: 10.1063/1.4979640

XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction
journal, August 2017

  • Thomaston, Jessica L.; Woldeyes, Rahel A.; Nakane, Takanori
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 51
  • DOI: 10.1073/pnas.1705624114

A fixed-target platform for serial femtosecond crystallography in a hydrated environment
journal, January 2020


Using sound pulses to solve the crystal-harvesting bottleneck
journal, October 2018

  • Samara, Yasmin N.; Brennan, Haley M.; McCarthy, Liam
  • Acta Crystallographica Section D Structural Biology, Vol. 74, Issue 10
  • DOI: 10.1107/s2059798318011506

Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography
journal, January 2019


A guide to sample delivery systems for serial crystallography
journal, August 2019

  • Zhao, Feng‐Zhu; Zhang, Bin; Yan, Er‐Kai
  • The FEBS Journal, Vol. 286, Issue 22
  • DOI: 10.1111/febs.15099

Room-Temperature Macromolecular Crystallography Using a Micro-Patterned Silicon Chip with Minimal Background Scattering
text, January 2016

  • Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2016-02690

A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction
journal, February 2018

  • Sui, Shuo; Wang, Yuxi; Dimitrakopoulos, Christos
  • Crystals, Vol. 8, Issue 2
  • DOI: 10.3390/cryst8020076

A microfluidic flow-focusing device for low sample consumption serial synchrotron crystallography experiments in liquid flow
text, January 2019


Long-wavelength native-SAD phasing: opportunities and challenges
text, January 2019


A fixed-target platform for serial femtosecond crystallography in a hydrated environment
text, January 2020

  • Shelby, M. L.; Gilbile, D.; Grant, T. D.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-05316

Strategies for sample delivery for femtosecond crystallography
text, January 2019


Long-wavelength native-SAD phasing: opportunities and challenges
text, January 2019