DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics

Abstract

Abstract Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge‐transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge‐transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all‐inorganic transport layers in a planar p‐i‐n junction device configuration using formamidinium lead tribromide (FAPbBr 3 ) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputtered zinc oxide as hole‐ and electron‐transport materials, respectively. Using only inorganic charge‐transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75 % at an open‐circuit voltage of 1.23 V. The transition of planar FAPbBr 3 devices making from all‐organic towards all–inorganic charge‐transport layers is studied in detail.

Authors:
 [1];  [1];  [1];  [2];  [1]
  1. Indian Institute of Technology Bombay, Mumbai (India)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1395106
Alternate Identifier(s):
OSTI ID: 1378391
Report Number(s):
NREL/JA-5K00-70190
Journal ID: ISSN 2194-4288
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Energy Technology
Additional Journal Information:
Journal Volume: 5; Journal Issue: 10; Journal ID: ISSN 2194-4288
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; atomic layer deposition; inorganic transport layer; nickel oxide; perovskite solar cells; wide band gap

Citation Formats

Subbiah, Anand S., Mahuli, Neha, Agarwal, Sumanshu, van Hest, Maikel F. A. M., and Sarkar, Shaibal K. Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics. United States: N. p., 2017. Web. doi:10.1002/ente.201700361.
Subbiah, Anand S., Mahuli, Neha, Agarwal, Sumanshu, van Hest, Maikel F. A. M., & Sarkar, Shaibal K. Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics. United States. https://doi.org/10.1002/ente.201700361
Subbiah, Anand S., Mahuli, Neha, Agarwal, Sumanshu, van Hest, Maikel F. A. M., and Sarkar, Shaibal K. Fri . "Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics". United States. https://doi.org/10.1002/ente.201700361. https://www.osti.gov/servlets/purl/1395106.
@article{osti_1395106,
title = {Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics},
author = {Subbiah, Anand S. and Mahuli, Neha and Agarwal, Sumanshu and van Hest, Maikel F. A. M. and Sarkar, Shaibal K.},
abstractNote = {Abstract Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge‐transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge‐transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all‐inorganic transport layers in a planar p‐i‐n junction device configuration using formamidinium lead tribromide (FAPbBr 3 ) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputtered zinc oxide as hole‐ and electron‐transport materials, respectively. Using only inorganic charge‐transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75 % at an open‐circuit voltage of 1.23 V. The transition of planar FAPbBr 3 devices making from all‐organic towards all–inorganic charge‐transport layers is studied in detail.},
doi = {10.1002/ente.201700361},
journal = {Energy Technology},
number = 10,
volume = 5,
place = {United States},
year = {Fri Jul 21 00:00:00 EDT 2017},
month = {Fri Jul 21 00:00:00 EDT 2017}
}

Works referenced in this record:

Inverted Perovskite Solar Cells: Progresses and Perspectives
journal, May 2016


Carbon-Double-Bond-Free Printed Solar Cells from TiO 2 /CH 3 NH 3 PbI 3 /CuSCN/Au: Structural Control and Photoaging Effects
journal, March 2014


Introducing Cu 2 O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures
journal, January 2016

  • Chatterjee, Soumyo; Pal, Amlan J.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpcc.5b11540

Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
journal, January 2016

  • Jesper Jacobsson, T.; Correa-Baena, Juan-Pablo; Pazoki, Meysam
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C6EE00030D

All-solid-state dye-sensitized solar cells with high efficiency
journal, May 2012

  • Chung, In; Lee, Byunghong; He, Jiaqing
  • Nature, Vol. 485, Issue 7399, p. 486-489
  • DOI: 10.1038/nature11067

Organolead Halide Perovskite: New Horizons in Solar Cell Research
journal, February 2014

  • Kim, Hui-Seon; Im, Sang Hyuk; Park, Nam-Gyu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11, p. 5615-5625
  • DOI: 10.1021/jp409025w

Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting
journal, May 2014

  • Amat, Anna; Mosconi, Edoardo; Ronca, Enrico
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl5012992

The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells
journal, January 2017

  • Zhou, Junshuai; Meng, Xiangyue; Zhang, Xiangfeng
  • Materials Chemistry Frontiers, Vol. 1, Issue 5
  • DOI: 10.1039/C6QM00248J

Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells
journal, January 2015

  • Chueh, Chu-Chen; Li, Chang-Zhi; Jen, Alex K. -Y.
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE03824J

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
journal, May 2013

  • Heo, Jin Hyuck; Im, Sang Hyuk; Noh, Jun Hong
  • Nature Photonics, Vol. 7, Issue 6, p. 486-491
  • DOI: 10.1038/nphoton.2013.80

Perovskite Solar Cells: Beyond Methylammonium Lead Iodide
journal, February 2015

  • Boix, Pablo P.; Agarwala, Shweta; Koh, Teck Ming
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 5
  • DOI: 10.1021/jz502547f

Photovoltaic and Amplified Spontaneous Emission Studies of High-Quality Formamidinium Lead Bromide Perovskite Films
journal, February 2016

  • Arora, Neha; Dar, M. Ibrahim; Hezam, Mahmoud
  • Advanced Functional Materials, Vol. 26, Issue 17
  • DOI: 10.1002/adfm.201504977

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
journal, May 2015


Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells
journal, May 2014

  • Subbiah, Anand S.; Halder, Ansuman; Ghosh, Soham
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz500645n

Consolidation and Expansion of Perovskite Solar Cell Research
journal, February 2016


Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
journal, October 2012


CuGaO 2 : A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells
journal, December 2016


The Progress of Interface Design in Perovskite-Based Solar Cells
journal, June 2016

  • Fan, Rundong; Huang, Yuan; Wang, Ligang
  • Advanced Energy Materials, Vol. 6, Issue 17
  • DOI: 10.1002/aenm.201600460

Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide
journal, August 2014

  • Hanusch, Fabian C.; Wiesenmayer, Erwin; Mankel, Eric
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 16
  • DOI: 10.1021/jz501237m

Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor
journal, January 2014

  • Ryu, Seungchan; Noh, Jun Hong; Jeon, Nam Joong
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00762J

Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
journal, October 2015


A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature
journal, January 2016

  • Albrecht, Steve; Saliba, Michael; Correa Baena, Juan Pablo
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE02965A

High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers
journal, June 2013

  • Abrusci, Agnese; Stranks, Samuel D.; Docampo, Pablo
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401044q

An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide
journal, December 2013

  • Christians, Jeffrey A.; Fung, Raymond C. M.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 136, Issue 2, p. 758-764
  • DOI: 10.1021/ja411014k

The light and shade of perovskite solar cells
journal, August 2014


Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process
journal, January 2015

  • Chen, Chun-Chao; Bae, Sang-Hoon; Chang, Wei-Hsuan
  • Materials Horizons, Vol. 2, Issue 2
  • DOI: 10.1039/C4MH00237G

Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage
journal, October 2016


Stable p-i-n FAPbBr 3 Devices with Improved Efficiency Using Sputtered ZnO as Electron Transport Layer
journal, February 2017

  • Subbiah, Anand S.; Agarwal, Sumanshu; Mahuli, Neha
  • Advanced Materials Interfaces, Vol. 4, Issue 8
  • DOI: 10.1002/admi.201601143

Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells
journal, October 2013

  • Snaith, Henry J.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 21, p. 3623-3630
  • DOI: 10.1021/jz4020162

Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage
text, January 2016

  • Arora, Neha; Dar, Mi; Abdi-Jalebi, M.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.9023