skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2

Abstract

The doping of Al into layered Li transition metal (TM) oxide cathode materials, LiTMO2, is known to improve the structural and thermal stability, although the origin of the enhanced properties is not well understood. We have investigated the effect of aluminum doping on layer stabilization using a combination of techniques to measure the aluminum distribution in layered LiNi0.8Co0.15Al0.05O2 (NCA) over multiple length scales with 27Al and 7Li MAS NMR, local electron atom probe (LEAP) tomography, X-ray and neutron diffraction, DFT, and SQUID magnetic susceptibility measurements. LEAP tomographic maps show a homogenous distribution of Ni, Co, Al and O2 throughout the structure at the particle level in agreement with the hightemperature phase diagram. 7Li and 27Al NMR indicates that the Ni3+ ions undergo a dynamic Jahn-Teller (JT) distortion. 27Al NMR spectra indicate that the Al reduces the strain associated with the JT distortion, by preferential electronic ordering of the JT long bonds directed toward the Al3+ ion. Our ability to understand the complex atomic and orbital ordering around Al3+ demonstrated in the current method will be useful for studying the local environment of Al3+ in a range of transition metal oxide battery materials.

Authors:
 [1];  [1];  [2];  [3];  [4];  [3];  [5];  [3];  [6];  [4];  [4];  [4];  [5];  [3];  [2];  [1]
  1. Univ. of Cambridge (United Kingdom). Dept. of Chemistry
  2. Univ. of California, Santa Barbara, CA (United States). Materials Dept.
  3. Univ. of California, San Diego, CA (United States). Dept. of NanoEngineering
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source
  5. State Univ. of New York (SUNY), Binghamton, NY (United States). Inst. for Materials Research
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1378325
Grant/Contract Number:  
AC02-06CH11357; SC0012583; AC05-76RL01830; SC0001294
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 22; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 27 Al NMR; NCA; atom probe tomography; dynamic Jahn-Teller; paramagnetic NMR

Citation Formats

Trease, Nicole M., Seymour, Ieuan D., Radin, Maxwell D., Liu, Haodong, Liu, Hao, Hy, Sunny, Chernova, Natalya, Parikh, Pritesh, Devaraj, Arun, Wiaderek, Kamila M., Chupas, Peter J., Chapman, Karena W., Whittingham, M. Stanley, Meng, Ying Shirley, Van der Van, Anton, and Grey, Clare P. Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2. United States: N. p., 2016. Web. https://doi.org/10.1021/acs.chemmater.6b02797.
Trease, Nicole M., Seymour, Ieuan D., Radin, Maxwell D., Liu, Haodong, Liu, Hao, Hy, Sunny, Chernova, Natalya, Parikh, Pritesh, Devaraj, Arun, Wiaderek, Kamila M., Chupas, Peter J., Chapman, Karena W., Whittingham, M. Stanley, Meng, Ying Shirley, Van der Van, Anton, & Grey, Clare P. Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2. United States. https://doi.org/10.1021/acs.chemmater.6b02797
Trease, Nicole M., Seymour, Ieuan D., Radin, Maxwell D., Liu, Haodong, Liu, Hao, Hy, Sunny, Chernova, Natalya, Parikh, Pritesh, Devaraj, Arun, Wiaderek, Kamila M., Chupas, Peter J., Chapman, Karena W., Whittingham, M. Stanley, Meng, Ying Shirley, Van der Van, Anton, and Grey, Clare P. Fri . "Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2". United States. https://doi.org/10.1021/acs.chemmater.6b02797. https://www.osti.gov/servlets/purl/1378325.
@article{osti_1378325,
title = {Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2},
author = {Trease, Nicole M. and Seymour, Ieuan D. and Radin, Maxwell D. and Liu, Haodong and Liu, Hao and Hy, Sunny and Chernova, Natalya and Parikh, Pritesh and Devaraj, Arun and Wiaderek, Kamila M. and Chupas, Peter J. and Chapman, Karena W. and Whittingham, M. Stanley and Meng, Ying Shirley and Van der Van, Anton and Grey, Clare P.},
abstractNote = {The doping of Al into layered Li transition metal (TM) oxide cathode materials, LiTMO2, is known to improve the structural and thermal stability, although the origin of the enhanced properties is not well understood. We have investigated the effect of aluminum doping on layer stabilization using a combination of techniques to measure the aluminum distribution in layered LiNi0.8Co0.15Al0.05O2 (NCA) over multiple length scales with 27Al and 7Li MAS NMR, local electron atom probe (LEAP) tomography, X-ray and neutron diffraction, DFT, and SQUID magnetic susceptibility measurements. LEAP tomographic maps show a homogenous distribution of Ni, Co, Al and O2 throughout the structure at the particle level in agreement with the hightemperature phase diagram. 7Li and 27Al NMR indicates that the Ni3+ ions undergo a dynamic Jahn-Teller (JT) distortion. 27Al NMR spectra indicate that the Al reduces the strain associated with the JT distortion, by preferential electronic ordering of the JT long bonds directed toward the Al3+ ion. Our ability to understand the complex atomic and orbital ordering around Al3+ demonstrated in the current method will be useful for studying the local environment of Al3+ in a range of transition metal oxide battery materials.},
doi = {10.1021/acs.chemmater.6b02797},
journal = {Chemistry of Materials},
number = 22,
volume = 28,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Some magnetic and crystallographic properties of the system Li+xNi++1−2xni+++xO
journal, January 1958

  • Goodenough, J. B.; Wickham, D. G.; Croft, W. J.
  • Journal of Physics and Chemistry of Solids, Vol. 5, Issue 1-2
  • DOI: 10.1016/0022-3697(58)90136-7

Non-cooperative Jahn-Teller effect in LiNiO2: An EXAFS study
journal, April 1995


Orbital degeneracy as a source of frustration in LiNiO 2
journal, July 2004


Magnetic interactions in layered LiNiO2 revealed by EPR of Ni3+
journal, January 1993


Effect of Cobalt Substitution on the Jahn-Teller Distortion of the NaNiO 2 Layered Oxide
journal, April 1994

  • Delmas, C.; Saadoune, I.; Dordor, P.
  • Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, Vol. 244, Issue 1
  • DOI: 10.1080/10587259408050127

Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries
journal, June 1996

  • Armstrong, A. Robert; Bruce, Peter G.
  • Nature, Vol. 381, Issue 6582
  • DOI: 10.1038/381499a0

A new variety of LiMnO2 with a layered structure
journal, August 1996


Local Coordination of Low-Spin Ni 3+ Probes in Trigonal LiAl y Co 1- y O 2 Monitored by HF-EPR
journal, April 2004

  • Stoyanova, Radostina; Zhecheva, Ekaterina; Alcántara, Ricardo
  • The Journal of Physical Chemistry B, Vol. 108, Issue 13
  • DOI: 10.1021/jp0376119

Low-temperature magnetic properties and high-temperature diffusive behavior of LiNiO 2 investigated by muon-spin spectroscopy
journal, December 2010


Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials
journal, September 1996


XAFS Investigations of LiNi 0.45 Mn 0.45 Co 0.1−y Al y O 2 Positive Electrode Materials
journal, January 2012

  • Conry, Thomas E.; Mehta, Apurva; Cabana, Jordi
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.048209jes

Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2
journal, February 2001


Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: Li x Ni 1.02 O 2 and Li x Ni 0.89 Al 0.16 O 2 ( x = 0.50 and 0.30)
journal, November 2003

  • Guilmard, M.; Croguennec, L.; Denux, D.
  • Chemistry of Materials, Vol. 15, Issue 23
  • DOI: 10.1021/cm030059f

Effect of Aluminum Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li1+x(Ni0.40Mn0.40Co0.20−zAlz)1−xO2
journal, January 2011

  • Croguennec, L.; Bains, J.; Bréger, J.
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3571479

Advantages of Simultaneous Substitution of Co in Li[Ni[sub 1∕3]Mn[sub 1∕3]Co[sub 1∕3]]O[sub 2] by Ni and Al
journal, January 2009

  • Zhou, Fu; Zhao, Xuemei; Jiang, Junwei
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3072759

Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi[sub 1∕3]Mn[sub 1∕3]Co[sub (1∕3−z)]Al[sub z]O[sub 2] Positive Electrode Materials
journal, January 2009

  • Zhou, Fu; Zhao, Xuemei; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 156, Issue 4
  • DOI: 10.1149/1.3079424

Segregation Tendency in Layered Aluminum-Substituted Lithium Nickel Oxides
journal, March 2009

  • Croguennec, L.; Shao-Horn, Y.; Gloter, A.
  • Chemistry of Materials, Vol. 21, Issue 6
  • DOI: 10.1021/cm802954g

Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes
journal, August 2015

  • Devaraj, A.; Gu, M.; Colby, R.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9014

NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries
journal, October 2004

  • Grey, Clare P.; Dupré, Nicolas
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020734p

Cobalt(III) Effect on 27 Al NMR Chemical Shifts in LiAl x Co 1 - x O 2
journal, August 2001

  • Gaudin, E.; Taulelle, F.; Stoyanova, R.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 34
  • DOI: 10.1021/jp0105948

Aluminium coordination in LiNi1−yAlyO2 solid solutions
journal, February 2000


Solid-state NMR Studies of Al-doped and Al2O3-coated LiCoO2
journal, November 2004


Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries
journal, January 2012

  • Rosina, Kenneth J.; Jiang, Meng; Zeng, Dongli
  • Journal of Materials Chemistry, Vol. 22, Issue 38
  • DOI: 10.1039/c2jm34114j

X-ray Diffraction, EPR, and 6 Li and 27 Al MAS NMR Study of LiAlO 2 −LiCoO 2 Solid Solutions
journal, January 1998

  • Alcántara, R.; Lavela, P.; Relaño, P. L.
  • Inorganic Chemistry, Vol. 37, Issue 2
  • DOI: 10.1021/ic9707220

Spin-Transfer Pathways in Paramagnetic Lithium Transition-Metal Phosphates from Combined Broadband Isotropic Solid-State MAS NMR Spectroscopy and DFT Calculations
journal, October 2012

  • Clément, Raphaële J.; Pell, Andrew J.; Middlemiss, Derek S.
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja306876u

Time-Resolved and Site-Specific Insights into Migration Pathways of Li + in α-Li 3 VF 6 by 6 Li 2D Exchange MAS NMR
journal, September 2010

  • Wilkening, M.; Romanova, E. E.; Nakhal, S.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 44
  • DOI: 10.1021/jp103433h

6Li and 7Li NMR in the LiNi1-yCoyO2 Solid Solution (0 .ltoreq. y .ltoreq. 1)
journal, March 1995

  • Marichal, Claire; Hirschinger, Jerome; Granger, Pierre
  • Inorganic Chemistry, Vol. 34, Issue 7
  • DOI: 10.1021/ic00111a026

Interphase Evolution at Two Promising Electrode Materials for Li-Ion Batteries: LiFePO 4 and LiNi 1/2 Mn 1/2 O 2
journal, April 2014

  • Dupré, Nicolas; Cuisinier, Marine; Martin, Jean-Frederic
  • ChemPhysChem, Vol. 15, Issue 10
  • DOI: 10.1002/cphc.201400070

Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations
journal, May 2003


Density Functional Theory-Based Bond Pathway Decompositions of Hyperfine Shifts: Equipping Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials
journal, April 2013

  • Middlemiss, Derek S.; Ilott, Andrew J.; Clément, Raphaële J.
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400201t

Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide
journal, June 2015

  • Britto, Sylvia; Leskes, Michal; Hua, Xiao
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b03395

Room temperature sol–gel synthesis of crystalline Cs[V3O8]. Probing the hydration level of the interlamellar space by 51V and 133Cs MAS NMR spectroscopy
journal, January 2008

  • Durupthy, Olivier; Maquet, Jocelyne; Bonhomme, Christian
  • Journal of Materials Chemistry, Vol. 18, Issue 31
  • DOI: 10.1039/b804397c

7 Li and 51 V MAS NMR Study of the Electrochemical Behavior of Li 1+ x V 3 O 8
journal, July 2004

  • Dupré, Nicolas; Gaubicher, Joel; Guyomard, Dominique
  • Chemistry of Materials, Vol. 16, Issue 14
  • DOI: 10.1021/cm034845w

A solid-state 51V NMR characterization of vanadium sites in LiCoxNi1−xVO4
journal, May 2004


Magnetic resonance studies of chemically intercalated LixV2O5 aerogels
journal, October 2002

  • Stallworth, P. E.; Johnson, F. S.; Greenbaum, S. G.
  • Journal of Applied Physics, Vol. 92, Issue 7
  • DOI: 10.1063/1.1503171

Isotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz
journal, January 2012

  • Hung, Ivan; Zhou, Lina; Pourpoint, Frédérique
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209600m

Linking Local Environments and Hyperfine Shifts: A Combined Experimental and Theoretical 31 P and 7 Li Solid-State NMR Study of Paramagnetic Fe(III) Phosphates
journal, December 2010

  • Kim, Jongsik; Middlemiss, Derek S.; Chernova, Natasha A.
  • Journal of the American Chemical Society, Vol. 132, Issue 47
  • DOI: 10.1021/ja102678r

Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi 1– yz Co y Al z O 2 and Al-Doped LiNi x Mn y Co z O 2 via 27 Al MAS NMR Spectroscopy
journal, June 2016

  • Dogan, Fulya; Vaughey, John T.; Iddir, Hakim
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 26
  • DOI: 10.1021/acsami.6b04516

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Finite-temperature properties of strongly anharmonic and mechanically unstable crystal phases from first principles
journal, December 2013


Thermodynamics of the Zr-O system from first-principles calculations
journal, September 2013


Linking the electronic structure of solids to their thermodynamic and kinetic properties
journal, March 2010


2 H and 27 Al Solid-State NMR Study of the Local Environments in Al-Doped 2-Line Ferrihydrite, Goethite, and Lepidocrocite
journal, May 2015


Simulation of NMR Fermi Contact Shifts for Lithium Battery Materials: The Need for an Efficient Hybrid Functional Approach
journal, August 2012

  • Zhang, Yuesheng; Castets, Aurore; Carlier, Dany
  • The Journal of Physical Chemistry C, Vol. 116, Issue 33
  • DOI: 10.1021/jp304762f

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Fully optimized contracted Gaussian basis sets for atoms Li to Kr
journal, August 1992

  • Schäfer, Ansgar; Horn, Hans; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463096

A new O3-type layered oxide cathode with high energy/power density for rechargeable Na batteries
journal, January 2015

  • Liu, Haodong; Xu, Jing; Ma, Chuze
  • Chemical Communications, Vol. 51, Issue 22
  • DOI: 10.1039/C4CC09760B

Understanding the Role of NH 4 F and Al 2 O 3 Surface Co-modification on Lithium-Excess Layered Oxide Li 1.2 Ni 0.2 Mn 0.6 O 2
journal, August 2015

  • Liu, Haodong; Qian, Danna; Verde, Michael G.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 34
  • DOI: 10.1021/acsami.5b04932

7 Li NMR Study on Irreversible Capacity of LiNi 0.8-x Co 0.15 Al 0.05 Mg x O 2 Electrode in a Lithium-Ion Battery
journal, January 2015

  • Murakami, Miwa; Shimoda, Keiji; Ukyo, Yoshio
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0781507jes

Effects of cationic substitution on structural defects in layered cathode materials LiNiO2
journal, January 2014

  • Chen, Hungru; Dawson, James A.; Harding, John H.
  • Journal of Materials Chemistry A, Vol. 2, Issue 21
  • DOI: 10.1039/c4ta00637b

    Works referencing / citing this record:

    Understanding the role of aluminium in determining the surface structure and electrochemical performance of layered cathodes
    journal, January 2019


    Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation
    journal, January 2018

    • Liu, Haodong; Liu, Hao; Seymour, Ieuan D.
    • Journal of Materials Chemistry A, Vol. 6, Issue 9
    • DOI: 10.1039/c7ta10829j

    Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries
    journal, December 2019

    • Wang, Ding; Liu, Weihong; Zhang, Xuhong
    • International Journal of Photoenergy, Vol. 2019
    • DOI: 10.1155/2019/2730849

    Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
    journal, July 2017

    • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
    • Advanced Energy Materials, Vol. 7, Issue 20
    • DOI: 10.1002/aenm.201602888

    Revisiting the charge compensation mechanisms in LiNi 0.8 Co 0.2−y Al y O 2 systems
    journal, January 2019

    • Lebens-Higgins, Zachary W.; Faenza, Nicholas V.; Radin, Maxwell D.
    • Materials Horizons, Vol. 6, Issue 10
    • DOI: 10.1039/c9mh00765b

    High‐Voltage Performance of Ni‐Rich NCA Cathodes: Linking Operating Voltage with Cathode Degradation
    journal, August 2019

    • David, Lamuel; Mohanty, Debasish; Geng, Linxiao
    • ChemElectroChem, Vol. 6, Issue 22
    • DOI: 10.1002/celc.201901338

    The distribution of reactive Ni 2+ in 2D Mg 2−x Ni x Al-LDH nanohybrid materials determined by solid state 27 Al MAS NMR spectroscopy
    journal, January 2018

    • Jensen, Nicholai Daugaard; Forano, Claude; Pushparaj, Suraj Shiv Charan
    • Physical Chemistry Chemical Physics, Vol. 20, Issue 39
    • DOI: 10.1039/c8cp05243c