DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1

Abstract

Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Thomas Jefferson Univ., Philadelphia, PA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1378282
Alternate Identifier(s):
OSTI ID: 1344495
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Molecular Cell
Additional Journal Information:
Journal Name: Molecular Cell Journal Volume: 60 Journal Issue: 5; Journal ID: ISSN 1097-2765
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Eustermann, Sebastian, Wu, Wing-Fung, Langelier, Marie-France, Yang, Ji-Chun, Easton, Laura E., Riccio, Amanda A., Pascal, John M., and Neuhaus, David. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. United States: N. p., 2015. Web. doi:10.1016/j.molcel.2015.10.032.
Eustermann, Sebastian, Wu, Wing-Fung, Langelier, Marie-France, Yang, Ji-Chun, Easton, Laura E., Riccio, Amanda A., Pascal, John M., & Neuhaus, David. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. United States. https://doi.org/10.1016/j.molcel.2015.10.032
Eustermann, Sebastian, Wu, Wing-Fung, Langelier, Marie-France, Yang, Ji-Chun, Easton, Laura E., Riccio, Amanda A., Pascal, John M., and Neuhaus, David. Tue . "Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1". United States. https://doi.org/10.1016/j.molcel.2015.10.032.
@article{osti_1378282,
title = {Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1},
author = {Eustermann, Sebastian and Wu, Wing-Fung and Langelier, Marie-France and Yang, Ji-Chun and Easton, Laura E. and Riccio, Amanda A. and Pascal, John M. and Neuhaus, David},
abstractNote = {Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.},
doi = {10.1016/j.molcel.2015.10.032},
journal = {Molecular Cell},
number = 5,
volume = 60,
place = {United States},
year = {Tue Dec 01 00:00:00 EST 2015},
month = {Tue Dec 01 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.molcel.2015.10.032

Citation Metrics:
Cited by: 172 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes
journal, December 2019

  • Wigle, Tim J.; Church, W. David; Majer, Christina R.
  • SLAS DISCOVERY: Advancing Life Sciences R&D
  • DOI: 10.1177/2472555219883623

Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes
journal, December 2019

  • Wigle, Tim J.; Church, W. David; Majer, Christina R.
  • SLAS DISCOVERY: Advancing Life Sciences R&D
  • DOI: 10.1177/2472555219883623

Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity
journal, September 2016

  • Prasad, Rajendra; Poltoratsky, Vladimir; Hou, Esther W.
  • Nucleic Acids Research, Vol. 44, Issue 22
  • DOI: 10.1093/nar/gkw869

Targeting DNA repair in cancer: current state and novel approaches
journal, October 2019

  • Klinakis, Apostolos; Karagiannis, Dimitris; Rampias, Theodoros
  • Cellular and Molecular Life Sciences, Vol. 77, Issue 4
  • DOI: 10.1007/s00018-019-03299-8

PARP Inhibition in Cancer: An Update on Clinical Development
journal, October 2019


RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients
journal, August 2018


NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains
journal, February 2018

  • Langelier, Marie-France; Zandarashvili, Levani; Aguiar, Pedro M.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-03234-8

Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance
journal, May 2018

  • Pettitt, Stephen J.; Krastev, Dragomir B.; Brandsma, Inger
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-03917-2

Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation
journal, March 2019

  • O’Sullivan, Julia; Tedim Ferreira, Maria; Gagné, Jean-Philippe
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08859-x

The beginning of the end for conventional RECIST — novel therapies require novel imaging approaches
journal, February 2019

  • Gerwing, Mirjam; Herrmann, Ken; Helfen, Anne
  • Nature Reviews Clinical Oncology, Vol. 16, Issue 7
  • DOI: 10.1038/s41571-019-0169-5

ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes
journal, February 2019

  • Grimaldi, Giovanna; Corda, Daniela
  • Biochemical Society Transactions, Vol. 47, Issue 1
  • DOI: 10.1042/bst20180416

PARPs in genome stability and signal transduction: implications for cancer therapy
journal, November 2018

  • Palazzo, Luca; Ahel, Ivan
  • Biochemical Society Transactions, Vol. 46, Issue 6
  • DOI: 10.1042/bst20180418

Caspase-7 uses RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and other RNA-binding proteins
journal, October 2019

  • Desroches, Alexandre; Denault, Jean-Bernard
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 43
  • DOI: 10.1073/pnas.1909283116

Mechanistic insight into the role of Poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage
journal, November 2019

  • Matkarimov, Bakhyt T.; Zharkov, Dmitry O.; Saparbaev, Murat K.
  • Mutagenesis, Vol. 35, Issue 1
  • DOI: 10.1093/mutage/gez045

Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro
journal, July 2016

  • Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella
  • Nucleic Acids Research
  • DOI: 10.1093/nar/gkw675

Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage
journal, August 2016

  • Steffen, Jamin D.; McCauley, Michael M.; Pascal, John M.
  • Nucleic Acids Research
  • DOI: 10.1093/nar/gkw710

PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1
journal, November 2017

  • Liu, Lili; Kong, Muwen; Gassman, Natalie R.
  • Nucleic Acids Research, Vol. 45, Issue 22
  • DOI: 10.1093/nar/gkx1047

Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation
journal, January 2018

  • Zarkovic, Gabriella; Belousova, Ekaterina A.; Talhaoui, Ibtissam
  • Nucleic Acids Research, Vol. 46, Issue 5
  • DOI: 10.1093/nar/gkx1318

APE2 promotes DNA damage response pathway from a single-strand break
journal, January 2018

  • Lin, Yunfeng; Bai, Liping; Cupello, Steven
  • Nucleic Acids Research, Vol. 46, Issue 5
  • DOI: 10.1093/nar/gky020

APE1 senses DNA single-strand breaks for repair and signaling
journal, December 2019

  • Lin, Yunfeng; Raj, Jude; Li, Jia
  • Nucleic Acids Research, Vol. 48, Issue 4
  • DOI: 10.1093/nar/gkz1175

Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins
journal, February 2019

  • Alemasova, Elizaveta E.; Lavrik, Olga I.
  • Nucleic Acids Research, Vol. 47, Issue 8
  • DOI: 10.1093/nar/gkz120

PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes
journal, January 2017

  • Gupte, Rebecca; Liu, Ziying; Kraus, W. Lee
  • Genes & Development, Vol. 31, Issue 2
  • DOI: 10.1101/gad.291518.116

The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival
journal, June 2016

  • Jubin, T.; Kadam, A.; Jariwala, M.
  • Cell Proliferation, Vol. 49, Issue 4
  • DOI: 10.1111/cpr.12268

Reversible mono-ADP-ribosylation of DNA breaks
journal, November 2017

  • Munnur, Deeksha; Ahel, Ivan
  • The FEBS Journal, Vol. 284, Issue 23
  • DOI: 10.1111/febs.14297

PARP inhibitors: Synthetic lethality in the clinic
journal, March 2017


Structural basis for allosteric PARP-1 retention on DNA breaks
journal, April 2020

  • Zandarashvili, Levani; Langelier, Marie-France; Velagapudi, Uday Kiran
  • Science, Vol. 368, Issue 6486
  • DOI: 10.1126/science.aax6367

Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity
journal, December 2018

  • Brady, Pamlea N.; Goel, Anupam; Johnson, Margaret A.
  • Microbiology and Molecular Biology Reviews, Vol. 83, Issue 1
  • DOI: 10.1128/mmbr.00038-18

Protein–Protein Interactions in DNA Base Excision Repair
journal, April 2018


Prospects for combining immune checkpoint blockade with PARP inhibition
journal, September 2019


Unanchored tri‐NEDD8 inhibits PARP‐1 to protect from oxidative stress‐induced cell death
journal, February 2019


ADP-ribosylation: from molecular mechanisms to human disease
journal, January 2020


Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities
journal, April 2019

  • Rissel, Dagmar; Peiter, Edgar
  • International Journal of Molecular Sciences, Vol. 20, Issue 7
  • DOI: 10.3390/ijms20071638