skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A surprisingly simple correlation between the classical and quantum structural networks in liquid water

Abstract

Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to the structure, dynamics, spectroscopy, and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using interaction potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. In this work, when performing an analysis of the hydrogen-bonded structural networks in liquid water resulting from the classical ( class) and quantum ( qm) descriptions of the nuclei with two interaction potentials that are at the two opposite ends of the range in describing quantum effects, namely the flexible, pair-wise additive q-TIP4P/F, and the flexible, polarizable TTM3-F, we found that the ( class) and ( qm) results can be superimposed over the temperature range T = 250-350 K using a surprisingly simple, linear scaling of the two temperatures according to T (qm) = α T (class) + Δ T, where α = 0.99 and Δ T = –6 K for q-TIP4P/F and α = 1.24 and Δ Tmore » = –64 K for TTM3-F. This simple relationship suggests that the structural networks resulting from the quantum and classical treatment of the nuclei with those two very different interaction potentials are essentially similar to each other over this extended temperature range once a model-dependent linear temperature scaling law is applied.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Univ. of Zurich (Switzerland)
  2. Univ. of Crete (Greece)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; Swiss National Science Foundation (SNF)
OSTI Identifier:
1378011
Alternate Identifier(s):
OSTI ID: 1374782
Report Number(s):
PNNL-SA-95712
Journal ID: ISSN 0021-9606; KC0301050
Grant/Contract Number:  
AC05-76RL01830; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 147; Journal Issue: 6; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hamm, Peter, Fanourgakis, George S., and Xantheas, Sotiris S. A surprisingly simple correlation between the classical and quantum structural networks in liquid water. United States: N. p., 2017. Web. doi:10.1063/1.4993166.
Hamm, Peter, Fanourgakis, George S., & Xantheas, Sotiris S. A surprisingly simple correlation between the classical and quantum structural networks in liquid water. United States. doi:10.1063/1.4993166.
Hamm, Peter, Fanourgakis, George S., and Xantheas, Sotiris S. Fri . "A surprisingly simple correlation between the classical and quantum structural networks in liquid water". United States. doi:10.1063/1.4993166. https://www.osti.gov/servlets/purl/1378011.
@article{osti_1378011,
title = {A surprisingly simple correlation between the classical and quantum structural networks in liquid water},
author = {Hamm, Peter and Fanourgakis, George S. and Xantheas, Sotiris S.},
abstractNote = {Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to the structure, dynamics, spectroscopy, and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using interaction potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. In this work, when performing an analysis of the hydrogen-bonded structural networks in liquid water resulting from the classical (class) and quantum (qm) descriptions of the nuclei with two interaction potentials that are at the two opposite ends of the range in describing quantum effects, namely the flexible, pair-wise additive q-TIP4P/F, and the flexible, polarizable TTM3-F, we found that the (class) and (qm) results can be superimposed over the temperature range T = 250-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(qm) = α T(class) + ΔT, where α = 0.99 and ΔT = –6 K for q-TIP4P/F and α = 1.24 and ΔT = –64 K for TTM3-F. This simple relationship suggests that the structural networks resulting from the quantum and classical treatment of the nuclei with those two very different interaction potentials are essentially similar to each other over this extended temperature range once a model-dependent linear temperature scaling law is applied.},
doi = {10.1063/1.4993166},
journal = {Journal of Chemical Physics},
number = 6,
volume = 147,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spectroscopic Determination of the Water Pair Potential
journal, May 1999


Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles
journal, January 2002

  • Xantheas, Sotiris S.; Burnham, Christian J.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 116, Issue 4
  • DOI: 10.1063/1.1423941

Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface
journal, January 2002

  • Burnham, Christian J.; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 116, Issue 4
  • DOI: 10.1063/1.1423940

Error and attack tolerance of complex networks
journal, July 2000

  • Albert, Réka; Jeong, Hawoong; Barabási, Albert-László
  • Nature, Vol. 406, Issue 6794
  • DOI: 10.1038/35019019

A quantitative account of quantum effects in liquid water
journal, October 2006

  • Fanourgakis, G. S.; Schenter, G. K.; Xantheas, S. S.
  • The Journal of Chemical Physics, Vol. 125, Issue 14
  • DOI: 10.1063/1.2358137

Relation between the melting temperature and the temperature of maximum density for the most common models of water
journal, October 2005

  • Vega, C.; Abascal, J. L. F.
  • The Journal of Chemical Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.2056539

A reappraisal of what we have learnt during three decades of computer simulations on water
journal, November 2002


Infrared Spectroscopy and Hydrogen-Bond Dynamics of Liquid Water from Centroid Molecular Dynamics with an Ab Initio-Based Force Field
journal, October 2009

  • Paesani, Francesco; Xantheas, Sotiris S.; Voth, Gregory A.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 39
  • DOI: 10.1021/jp907648y

The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties
journal, April 1994

  • Cao, Jianshu; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 100, Issue 7
  • DOI: 10.1063/1.467176

Second-order many-body perturbation study of ice Ih
journal, November 2012

  • He, Xiao; Sode, Olaseni; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 137, Issue 20
  • DOI: 10.1063/1.4767898

The phase diagram of water from quantum simulations
journal, January 2012

  • McBride, Carl; Noya, Eva G.; Aragones, Juan L.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 29
  • DOI: 10.1039/c2cp40962c

A new perspective on quantum time correlation functions
journal, December 1993

  • Cao, Jianshu; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 99, Issue 12
  • DOI: 10.1063/1.465512

Quantum diffusion in liquid para -hydrogen from ring-polymer molecular dynamics
journal, May 2005

  • Miller, Thomas F.; Manolopoulos, David E.
  • The Journal of Chemical Physics, Vol. 122, Issue 18
  • DOI: 10.1063/1.1893956

Development of a “First Principles” Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient
journal, November 2013

  • Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct400863t

Quantum Effects Strongly Influence the Surface Premelting of Ice
journal, January 2008

  • Paesani, Francesco; Voth, Gregory A.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 2
  • DOI: 10.1021/jp710640e

Hydrogen bonding definitions and dynamics in liquid water
journal, May 2007

  • Kumar, R.; Schmidt, J. R.; Skinner, J. L.
  • The Journal of Chemical Physics, Vol. 126, Issue 20
  • DOI: 10.1063/1.2742385

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions
journal, August 1933

  • Bernal, J. D.; Fowler, R. H.
  • The Journal of Chemical Physics, Vol. 1, Issue 8
  • DOI: 10.1063/1.1749327

Quantum effects on the maximum in density of water as described by the TIP4PQ/2005 model
journal, September 2009

  • Noya, E. G.; Vega, C.; Sesé, L. M.
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3239471

Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions
journal, December 2001

  • Mahoney, Michael W.; Jorgensen, William L.
  • The Journal of Chemical Physics, Vol. 115, Issue 23
  • DOI: 10.1063/1.1418243

Structural Inhomogeneity of Water by Complex Network Analysis
journal, December 2010

  • Rao, Francesco; Garrett-Roe, Sean; Hamm, Peter
  • The Journal of Physical Chemistry B, Vol. 114, Issue 47
  • DOI: 10.1021/jp1060792

Insights in quantum dynamical effects in the infrared spectroscopy of liquid water from a semiclassical study with an ab initio -based flexible and polarizable force field
journal, December 2011

  • Liu, Jian; Miller, William H.; Fanourgakis, George S.
  • The Journal of Chemical Physics, Vol. 135, Issue 24
  • DOI: 10.1063/1.3670960

Towards a microscopic description of the free-energy landscape of water
journal, October 2012

  • Prada-Gracia, Diego; Shevchuk, Roman; Hamm, Peter
  • The Journal of Chemical Physics, Vol. 137, Issue 14
  • DOI: 10.1063/1.4755746

Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space
journal, April 2013


Quantum effects in liquid water and ice: Model dependence
journal, August 2006

  • Hernández de la Peña, Lisandro; Kusalik, Peter G.
  • The Journal of Chemical Physics, Vol. 125, Issue 5
  • DOI: 10.1063/1.2238861

Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature
journal, August 1994


Molecular dynamics simulations at constant pressure and/or temperature
journal, February 1980

  • Andersen, Hans C.
  • The Journal of Chemical Physics, Vol. 72, Issue 4
  • DOI: 10.1063/1.439486

An efficient parallelization scheme for molecular dynamics simulations with many-body, flexible, polarizable empirical potentials: application to water
journal, July 2006

  • Fanourgakis, George S.; Tipparaju, Vinod; Nieplocha, Jarek
  • Theoretical Chemistry Accounts, Vol. 117, Issue 1
  • DOI: 10.1007/s00214-006-0145-x

A fast path integral method for polarizable force fields
journal, January 2009

  • Fanourgakis, George S.; Markland, Thomas E.; Manolopoulos, David E.
  • The Journal of Chemical Physics, Vol. 131, Issue 9
  • DOI: 10.1063/1.3216520

Markov models of molecular kinetics: Generation and validation
journal, May 2011

  • Prinz, Jan-Hendrik; Wu, Hao; Sarich, Marco
  • The Journal of Chemical Physics, Vol. 134, Issue 17
  • DOI: 10.1063/1.3565032

Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities
journal, April 2000

  • Nymand, Thomas M.; Linse, Per
  • The Journal of Chemical Physics, Vol. 112, Issue 14
  • DOI: 10.1063/1.481216

A potential model for the study of ices and amorphous water: TIP4P/Ice
journal, June 2005

  • Abascal, J. L. F.; Sanz, E.; García Fernández, R.
  • The Journal of Chemical Physics, Vol. 122, Issue 23
  • DOI: 10.1063/1.1931662

Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

Adiabatic path integral molecular dynamics methods. II. Algorithms
journal, February 1996

  • Cao, J.; Martyna, G. J.
  • The Journal of Chemical Physics, Vol. 104, Issue 5
  • DOI: 10.1063/1.470959

Determination of a flexible (12D) water dimer potential via direct inversion of spectroscopic data
journal, November 2002

  • Leforestier, Claude; Gatti, Fabien; Fellers, Raymond S.
  • The Journal of Chemical Physics, Vol. 117, Issue 19
  • DOI: 10.1063/1.1514977

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

‘‘ Ab initio ’’ liquid water
journal, December 1993

  • Laasonen, K.; Sprik, M.; Parrinello, M.
  • The Journal of Chemical Physics, Vol. 99, Issue 11
  • DOI: 10.1063/1.465574

The Flexible, Polarizable, Thole-Type Interaction Potential for Water (TTM2-F) Revisited
journal, March 2006

  • Fanourgakis, George S.; Xantheas, Sotiris S.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 11
  • DOI: 10.1021/jp056477k

High-level ab initio calculations for the four low-lying families of minima of (H[sub 2]O)[sub 20]. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials
journal, January 2004

  • Fanourgakis, George S.; Aprà, Edoardo; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 121, Issue 6
  • DOI: 10.1063/1.1767519

Molecular Dynamics Study of Liquid Water
journal, October 1971

  • Rahman, Aneesur; Stillinger, Frank H.
  • The Journal of Chemical Physics, Vol. 55, Issue 7
  • DOI: 10.1063/1.1676585

Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function
journal, August 2001

  • Stern, Harry A.; Rittner, F.; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 115, Issue 5
  • DOI: 10.1063/1.1376165

Hydrogen Bonding in Water
journal, November 2003


Exploring the Free Energy Landscape: From Dynamics to Networks and Back
journal, June 2009

  • Prada-Gracia, Diego; Gómez-Gardeñes, Jesús; Echenique, Pablo
  • PLoS Computational Biology, Vol. 5, Issue 6
  • DOI: 10.1371/journal.pcbi.1000415

The relationship between liquid, supercooled and glassy water
journal, November 1998

  • Mishima, Osamu; Stanley, H. Eugene
  • Nature, Vol. 396, Issue 6709
  • DOI: 10.1038/24540

A general purpose model for the condensed phases of water: TIP4P/2005
journal, December 2005

  • Abascal, J. L. F.; Vega, C.
  • The Journal of Chemical Physics, Vol. 123, Issue 23
  • DOI: 10.1063/1.2121687

Unraveling quantum mechanical effects in water using isotopic fractionation
journal, May 2012

  • Markland, T. E.; Berne, B. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 21
  • DOI: 10.1073/pnas.1203365109

A quantum mechanical study of structure in liquid H 2 O and D 2 O
journal, June 1985

  • Kuharski, Robert A.; Rossky, Peter J.
  • The Journal of Chemical Physics, Vol. 82, Issue 11
  • DOI: 10.1063/1.448641

Toward a Universal Water Model: First Principles Simulations from the Dimer to the Liquid Phase
journal, December 2012

  • Babin, Volodymyr; Medders, Gregory R.; Paesani, Francesco
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 24
  • DOI: 10.1021/jz3017733

Quantum effects in liquid water from an ab initio -based polarizable force field
journal, August 2007

  • Paesani, Francesco; Iuchi, Satoru; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 127, Issue 7
  • DOI: 10.1063/1.2759484

Competing quantum effects in the dynamics of a flexible water model
journal, July 2009

  • Habershon, Scott; Markland, Thomas E.; Manolopoulos, David E.
  • The Journal of Chemical Physics, Vol. 131, Issue 2
  • DOI: 10.1063/1.3167790

Lowest-Energy Structures of Water Clusters (H 2 O) 11 and (H 2 O) 13
journal, October 2006

  • Bulusu, Satya; Yoo, Soohaeng; Aprà, Edo
  • The Journal of Physical Chemistry A, Vol. 110, Issue 42
  • DOI: 10.1021/jp0655726

Nuclear Quantum Effects in the Reorientation of Water
journal, July 2010

  • Paesani, Francesco; Yoo, Soohaeng; Bakker, Huib J.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 15
  • DOI: 10.1021/jz100734w

The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics
journal, October 1994

  • Cao, Jianshu; Voth, Gregory A.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468399

The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data
journal, March 1997

  • Partridge, Harry; Schwenke, David W.
  • The Journal of Chemical Physics, Vol. 106, Issue 11
  • DOI: 10.1063/1.473987

Quantum fluctuations can promote or inhibit glass formation
journal, January 2011

  • Markland, Thomas E.; Morrone, Joseph A.; Berne, Bruce J.
  • Nature Physics, Vol. 7, Issue 2
  • DOI: 10.1038/nphys1865

A Critical Assessment of Two-Body and Three-Body Interactions in Water
journal, December 2012

  • Medders, Gregory R.; Babin, Volodymyr; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 2
  • DOI: 10.1021/ct300913g

Nuclear Quantum Effects in Water
journal, July 2008


The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters ( n =2–21) and the phonon spectrum of ice Ih
journal, March 1999

  • Burnham, Christian J.; Li, Jichen; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 110, Issue 9
  • DOI: 10.1063/1.478797

Structure of water; A Monte Carlo calculation
journal, March 1969