skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 1, 2018

Title: Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (βt), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate βt up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.
Authors:
ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics
Publication Date:
Grant/Contract Number:
FG02-96ER54375
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 3; Related Information: D.J. Schlossberg, G.M. Bodner, M.W. Bongard, M.G. Burke, R.J. Fonck, J.M. Perry, and J.A. Reusch, "Public Data Set: Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta," DOI: 10.18138/1340695; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY tokamaks; nuclear fusion; equilibrium reconstruction; spherical tokamak; helicity injection; magnetic reconnection
OSTI Identifier:
1377887
Alternate Identifier(s):
OSTI ID: 1377887