skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production

Abstract

We present that the rise of inorganic–biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic–abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica–cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica. Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H2ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700–1,900-cm-1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H2ase generating H2 as a molecular intermediate that dominates at longmore » time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). Lastly, this work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic–abiotic hybrid systems.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [3];  [2]
  1. Univ. of California, Berkeley, CA (United States). Department of Chemistry
  2. Univ. of California, Berkeley, CA (United States). Department of Chemistry and Department of Materials Science and Engineering; Kavli Energy NanoSciences Institute, Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1377542
Grant/Contract Number:  
AC02-05CH11231; DMR-1507914
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 113; Journal Issue: 42; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; 14 SOLAR ENERGY; 30 DIRECT ENERGY CONVERSION; energy conversion; spectroscopy; CO2 reduction; biohybrid systems; catalysis

Citation Formats

Kornienko, Nikolay, Sakimoto, Kelsey K., Herlihy, David M., Nguyen, Son C., Alivisatos, A. Paul, Harris, Charles. B., Schwartzberg, Adam, and Yang, Peidong. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. United States: N. p., 2016. Web. doi:10.1073/pnas.1610554113.
Kornienko, Nikolay, Sakimoto, Kelsey K., Herlihy, David M., Nguyen, Son C., Alivisatos, A. Paul, Harris, Charles. B., Schwartzberg, Adam, & Yang, Peidong. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. United States. doi:10.1073/pnas.1610554113.
Kornienko, Nikolay, Sakimoto, Kelsey K., Herlihy, David M., Nguyen, Son C., Alivisatos, A. Paul, Harris, Charles. B., Schwartzberg, Adam, and Yang, Peidong. Mon . "Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production". United States. doi:10.1073/pnas.1610554113. https://www.osti.gov/servlets/purl/1377542.
@article{osti_1377542,
title = {Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production},
author = {Kornienko, Nikolay and Sakimoto, Kelsey K. and Herlihy, David M. and Nguyen, Son C. and Alivisatos, A. Paul and Harris, Charles. B. and Schwartzberg, Adam and Yang, Peidong},
abstractNote = {We present that the rise of inorganic–biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic–abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica–cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica. Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H2ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700–1,900-cm-1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H2ase generating H2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). Lastly, this work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic–abiotic hybrid systems.},
doi = {10.1073/pnas.1610554113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 42,
volume = 113,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Photoinduced electron transfer from colloidal cadmium sulfide to methylviologen: a picosecond transient absorption study
journal, January 1988

  • Nosaka, Yoshio; Miyama, Hajime; Terauchi, Mamoru
  • The Journal of Physical Chemistry, Vol. 92, Issue 2
  • DOI: 10.1021/j100313a003

Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity
journal, July 2009

  • Pandelia, Maria-Eirini; Ogata, Hideaki; Currell, Leslie J.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 14, Issue 8
  • DOI: 10.1007/s00775-009-0566-9

Carbon Monoxide and Cyanide as Intrinsic Ligands to Iron in the Active Site of [NiFe]-Hydrogenases: NiFe(CN)
journal, February 1999

  • Pierik, Antonio J.; Roseboom, Winfried; Happe, Randolph P.
  • Journal of Biological Chemistry, Vol. 274, Issue 6
  • DOI: 10.1074/jbc.274.6.3331

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms
journal, March 2011

  • Nevin, Kelly P.; Hensley, Sarah A.; Franks, Ashley E.
  • Applied and Environmental Microbiology, Vol. 77, Issue 9, p. 2882-2886
  • DOI: 10.1128/AEM.02642-10

Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures
journal, August 2007


Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
journal, November 2014

  • Schuchmann, Kai; Müller, Volker
  • Nature Reviews Microbiology, Vol. 12, Issue 12
  • DOI: 10.1038/nrmicro3365

Activation and Inactivation of Hydrogenase Function and the Catalytic Cycle:  Spectroelectrochemical Studies
journal, October 2007

  • De Lacey, Antonio L.; Fernández, Víctor M.; Rousset, Marc
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr0501947

Extracellular Enzymes Facilitate Electron Uptake in Biocorrosion and Bioelectrosynthesis
journal, April 2015

  • Deutzmann, Jörg S.; Sahin, Merve; Spormann, Alfred M.
  • mBio, Vol. 6, Issue 2
  • DOI: 10.1128/mBio.00496-15

Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods
journal, January 2016

  • Ben-Shahar, Yuval; Scotognella, Francesco; Kriegel, Ilka
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10413

Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals
journal, April 2015


Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates
journal, December 2015

  • Flanagan, Moira L.; Long, Phillip D.; Dahlberg, Peter D.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 9
  • DOI: 10.1021/acs.jpca.5b08366

Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
journal, December 2015


Limitations and prospects of natural photosynthesis for bioenergy production
journal, June 2010


Energy and environment policy case for a global project on artificial photosynthesis
journal, January 2013

  • Faunce, Thomas A.; Lubitz, Wolfgang; Rutherford, A. W. (Bill)
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee00063j

Organelle-Targetable Fluorescent Probes for Imaging Hydrogen Peroxide in Living Cells via SNAP-Tag Protein Labeling
journal, March 2010

  • Srikun, Duangkhae; Albers, Aaron E.; Nam, Christine I.
  • Journal of the American Chemical Society, Vol. 132, Issue 12
  • DOI: 10.1021/ja100117u

Designing interfaces of hydrogenase–nanomaterial hybrids for efficient solar conversion
journal, August 2013


Electron Transfer Kinetics in CdS Nanorod–[FeFe]-Hydrogenase Complexes and Implications for Photochemical H 2 Generation
journal, March 2014

  • Wilker, Molly B.; Shinopoulos, Katherine E.; Brown, Katherine A.
  • Journal of the American Chemical Society, Vol. 136, Issue 11
  • DOI: 10.1021/ja413001p

Electron Transfer in Proteins
journal, June 1996


Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
journal, February 2011

  • Bond-Watts, Brooks B.; Bellerose, Robert J.; Chang, Michelle C. Y.
  • Nature Chemical Biology, Vol. 7, Issue 4
  • DOI: 10.1038/nchembio.537

Hybrid bioinorganic approach to solar-to-chemical conversion
journal, August 2015

  • Nichols, Eva M.; Gallagher, Joseph J.; Liu, Chong
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 37
  • DOI: 10.1073/pnas.1508075112

Artificial Photosynthesis for Sustainable Fuel and Chemical Production
journal, January 2015

  • Kim, Dohyung; Sakimoto, Kelsey K.; Hong, Dachao
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201409116

Competition between electron transfer, trapping, and recombination in CdS nanorod–hydrogenase complexes
journal, January 2015

  • Utterback, James K.; Wilker, Molly B.; Brown, Katherine A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 8
  • DOI: 10.1039/C4CP05993J

Chemistry of the Triplet 14-Electron Complex Fe(CO) 3 in Solution Studied by Ultrafast Time-Resolved IR Spectroscopy
journal, May 2012

  • Nguyen, Son C.; Lomont, Justin P.; Zoerb, Matthew C.
  • Organometallics, Vol. 31, Issue 10
  • DOI: 10.1021/om3002075

Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 Electrode
journal, January 2011

  • Morra, Simone; Valetti, Francesca; Sadeghi, Sheila J.
  • Chemical Communications, Vol. 47, Issue 38
  • DOI: 10.1039/c1cc14535e

Direct Evidence of Active-Site Reduction and Photodriven Catalysis in Sensitized Hydrogenase Assemblies
journal, June 2012

  • Greene, Brandon L.; Joseph, Crisjoe A.; Maroney, Michael J.
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja3042367

Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems
journal, June 2015


Charge Transfer Dynamics between Photoexcited CdS Nanorods and Mononuclear Ru Water-Oxidation Catalysts
journal, February 2013

  • Tseng, Huan-Wei; Wilker, Molly B.; Damrauer, Niels H.
  • Journal of the American Chemical Society, Vol. 135, Issue 9
  • DOI: 10.1021/ja400178g

Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots
journal, January 2011

  • Kambhampati, Patanjali
  • Accounts of Chemical Research, Vol. 44, Issue 1
  • DOI: 10.1021/ar1000428

Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases
journal, February 2016

  • Flanagan, Lindsey A.; Parkin, Alison
  • Biochemical Society Transactions, Vol. 44, Issue 1
  • DOI: 10.1042/BST20150201

Redesigning photosynthesis to sustainably meet global food and bioenergy demand
journal, June 2015

  • Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 28
  • DOI: 10.1073/pnas.1424031112

Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system
journal, February 2015

  • Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 8
  • DOI: 10.1073/pnas.1424872112

The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)
journal, July 2008


Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
journal, May 2011

  • Blankenship, R. E.; Tiede, D. M.; Barber, J.
  • Science, Vol. 332, Issue 6031, p. 805-809
  • DOI: 10.1126/science.1200165

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Long-range electron transfer
journal, February 2005

  • Gray, H. B.; Winkler, J. R.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 10
  • DOI: 10.1073/pnas.0408029102

Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
journal, January 2011


    Works referencing / citing this record:

    Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids
    journal, January 2019

    • Cestellos-Blanco, Stefano; Zhang, Hao; Yang, Peidong
    • Faraday Discussions, Vol. 215
    • DOI: 10.1039/c8fd00187a

    Review on optofluidic microreactors for artificial photosynthesis
    journal, January 2018

    • Huang, Xiaowen; Wang, Jianchun; Li, Tenghao
    • Beilstein Journal of Nanotechnology, Vol. 9
    • DOI: 10.3762/bjnano.9.5

    Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids
    journal, January 2019

    • Cestellos-Blanco, Stefano; Zhang, Hao; Yang, Peidong
    • Faraday Discussions, Vol. 215
    • DOI: 10.1039/c8fd00187a

    Review on optofluidic microreactors for artificial photosynthesis
    journal, January 2018

    • Huang, Xiaowen; Wang, Jianchun; Li, Tenghao
    • Beilstein Journal of Nanotechnology, Vol. 9
    • DOI: 10.3762/bjnano.9.5