skip to main content

DOE PAGESDOE PAGES

Title: A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations, these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.
Authors:
 [1] ;  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Parallel Computing
Additional Journal Information:
Journal Volume: 58; Journal Issue: C; Journal ID: ISSN 0167-8191
Publisher:
Elsevier
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; cardinality matching; bipartite graph; parallel algorithm; matrix-algebra
OSTI Identifier:
1377506
Alternate Identifier(s):
OSTI ID: 1397980