skip to main content

DOE PAGESDOE PAGES

Title: An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict the long-term output yields of photovoltaic farms under different environmental conditions.
Authors:
 [1] ;  [2] ;  [2] ;  [2] ;  [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5J00-66398
Journal ID: ISSN 2156-3381
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
IEEE Journal of Photovoltaics
Additional Journal Information:
Journal Volume: 6; Journal Issue: 5; Journal ID: ISSN 2156-3381
Publisher:
IEEE
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; analytical model; compact model; copper indium gallium diselenide (CIGS); heterojunction; illumination dependent; temperature dependent
OSTI Identifier:
1376668