skip to main content

DOE PAGESDOE PAGES

Title: Thermally Induced Interdiffusion and Precipitation in a Ni/Ni 3 Al System

Ordered Ni 3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni 3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni 3Al interface, increasing the probability of precipitation.
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5K00-64327
Journal ID: ISSN 2166-3831; TRN: US1702355
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Materials Research Letters
Additional Journal Information:
Journal Volume: 3; Journal Issue: 3; Journal ID: ISSN 2166-3831
Publisher:
Taylor and Francis
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Ni-based superalloy; interdiffusion; precipitation; Ni/Ni3Al interface; thermal annealing
OSTI Identifier:
1376665

Sun, C., Martinez, E., Aguiar, J. A., Caro, A., Valdez, J. A., Baldwin, K., Xu, Y., Uberuaga, B. P., Anderoglu, O., and Maloy, S. A.. Thermally Induced Interdiffusion and Precipitation in a Ni/Ni3 Al System. United States: N. p., Web. doi:10.1080/21663831.2015.1045630.
Sun, C., Martinez, E., Aguiar, J. A., Caro, A., Valdez, J. A., Baldwin, K., Xu, Y., Uberuaga, B. P., Anderoglu, O., & Maloy, S. A.. Thermally Induced Interdiffusion and Precipitation in a Ni/Ni3 Al System. United States. doi:10.1080/21663831.2015.1045630.
Sun, C., Martinez, E., Aguiar, J. A., Caro, A., Valdez, J. A., Baldwin, K., Xu, Y., Uberuaga, B. P., Anderoglu, O., and Maloy, S. A.. 2015. "Thermally Induced Interdiffusion and Precipitation in a Ni/Ni3 Al System". United States. doi:10.1080/21663831.2015.1045630. https://www.osti.gov/servlets/purl/1376665.
@article{osti_1376665,
title = {Thermally Induced Interdiffusion and Precipitation in a Ni/Ni3 Al System},
author = {Sun, C. and Martinez, E. and Aguiar, J. A. and Caro, A. and Valdez, J. A. and Baldwin, K. and Xu, Y. and Uberuaga, B. P. and Anderoglu, O. and Maloy, S. A.},
abstractNote = {Ordered Ni3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni3Al interface, increasing the probability of precipitation.},
doi = {10.1080/21663831.2015.1045630},
journal = {Materials Research Letters},
number = 3,
volume = 3,
place = {United States},
year = {2015},
month = {5}
}