DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution

Abstract

Ionic liquids dissolve cellulose in a more efficient and environmentally acceptable way than conventional methods in aqueous solution. An understanding of how ionic liquids act on cellulose is essential for improving pretreatment conditions and thus detailed knowledge of the interactions between the cations, anions and cellulose is necessary. Here in this study, to explore ionic liquid effects, we perform all-atom molecular dynamics simulations of a cellulose microfibril in 1-butyl-3-methylimidazolium chloride and analyze site–site interactions and cation orientations at the solute–solvent interface. The results indicate that Cl- anions predominantly interact with cellulose surface hydroxyl groups but with differences between chains of neighboring cellulose layers, referred to as center and origin chains; Cl- binds to C3-hydroxyls on the origin chains but to C2- and C6-hydroxyls on the center chains, thus resulting in a distinct pattern along glucan chains of the hydrophilic fiber surfaces. In particular, Cl- binding disrupts intrachain O3H–O5 hydrogen bonds on the origin chains but not those on the center chains. In contrast, Bmim+ cations stack preferentially on the hydrophobic cellulose surface, governed by non-polar interactions with cellulose. Complementary to the polar interactions between Cl- and cellulose, the stacking interaction between solvent cation rings and cellulose pyranose rings can compensatemore » the interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. Moreover, a frequently occurring intercalation of Bmim+ on the hydrophilic surface is observed, which by separating cellulose layers can also potentially facilitate the initiation of fiber disintegration. The results provide a molecular description why ionic liquids are ideal cellulose solvents, the concerted action of anions and cations on the hydrophobic and hydrophilic surfaces being key to the efficient dissolution of the amphiphilic carbohydrate.« less

Authors:
 [1];  [2];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Graduate School of Genome Science and Technology
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry, Cellular & Molecular Biology
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1376299
Grant/Contract Number:  
AC05-00OR22725; TG-MCA08X032
Resource Type:
Accepted Manuscript
Journal Name:
Cellulose
Additional Journal Information:
Journal Volume: 21; Journal Issue: 2; Journal ID: ISSN 0969-0239
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Cellulose; Ionic liquids; Pretreatment; MD simulation

Citation Formats

Mostofian, Barmak, Smith, Jeremy C., and Cheng, Xiaolin. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. United States: N. p., 2013. Web. doi:10.1007/s10570-013-0018-0.
Mostofian, Barmak, Smith, Jeremy C., & Cheng, Xiaolin. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. United States. https://doi.org/10.1007/s10570-013-0018-0
Mostofian, Barmak, Smith, Jeremy C., and Cheng, Xiaolin. Sun . "Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution". United States. https://doi.org/10.1007/s10570-013-0018-0. https://www.osti.gov/servlets/purl/1376299.
@article{osti_1376299,
title = {Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution},
author = {Mostofian, Barmak and Smith, Jeremy C. and Cheng, Xiaolin},
abstractNote = {Ionic liquids dissolve cellulose in a more efficient and environmentally acceptable way than conventional methods in aqueous solution. An understanding of how ionic liquids act on cellulose is essential for improving pretreatment conditions and thus detailed knowledge of the interactions between the cations, anions and cellulose is necessary. Here in this study, to explore ionic liquid effects, we perform all-atom molecular dynamics simulations of a cellulose microfibril in 1-butyl-3-methylimidazolium chloride and analyze site–site interactions and cation orientations at the solute–solvent interface. The results indicate that Cl- anions predominantly interact with cellulose surface hydroxyl groups but with differences between chains of neighboring cellulose layers, referred to as center and origin chains; Cl- binds to C3-hydroxyls on the origin chains but to C2- and C6-hydroxyls on the center chains, thus resulting in a distinct pattern along glucan chains of the hydrophilic fiber surfaces. In particular, Cl- binding disrupts intrachain O3H–O5 hydrogen bonds on the origin chains but not those on the center chains. In contrast, Bmim+ cations stack preferentially on the hydrophobic cellulose surface, governed by non-polar interactions with cellulose. Complementary to the polar interactions between Cl- and cellulose, the stacking interaction between solvent cation rings and cellulose pyranose rings can compensate the interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. Moreover, a frequently occurring intercalation of Bmim+ on the hydrophilic surface is observed, which by separating cellulose layers can also potentially facilitate the initiation of fiber disintegration. The results provide a molecular description why ionic liquids are ideal cellulose solvents, the concerted action of anions and cations on the hydrophobic and hydrophilic surfaces being key to the efficient dissolution of the amphiphilic carbohydrate.},
doi = {10.1007/s10570-013-0018-0},
journal = {Cellulose},
number = 2,
volume = 21,
place = {United States},
year = {Sun Aug 11 00:00:00 EDT 2013},
month = {Sun Aug 11 00:00:00 EDT 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen Bond Acceptor Properties of Ionic Liquids and Their Effect on Cellulose Solubility
book, January 2010


Molecular Dynamics Study of Polysaccharides in Binary Solvent Mixtures of an Ionic Liquid and Water
journal, September 2011

  • Liu, Hanbin; Sale, Kenneth L.; Simmons, Blake A.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 34
  • DOI: 10.1021/jp111738q

Dissolution of Cellose with Ionic Liquids
journal, May 2002

  • Swatloski, Richard P.; Spear, Scott K.; Holbrey, John D.
  • Journal of the American Chemical Society, Vol. 124, Issue 18, p. 4974-4975
  • DOI: 10.1021/ja025790m

Dissolution of cellulose with ionic liquids and its application: a mini-review
journal, January 2006

  • Zhu, Shengdong; Wu, Yuanxin; Chen, Qiming
  • Green Chemistry, Vol. 8, Issue 4, p. 325-327
  • DOI: 10.1039/b601395c

GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

When Sugars Get Wet. A Comprehensive Study of the Behavior of Water on the Surface of Oligosaccharides
journal, August 2009

  • Ramadugu, Sai Kumar; Chung, Ying-Hua; Xia, Junchao
  • The Journal of Physical Chemistry B, Vol. 113, Issue 31
  • DOI: 10.1021/jp904981v

Simulation studies of the insolubility of cellulose
journal, September 2010


Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification
journal, July 2010


Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step
journal, January 2006

  • Dadi, Anantharam P.; Varanasi, Sasidhar; Schall, Constance A.
  • Biotechnology and Bioengineering, Vol. 95, Issue 5, p. 904-910
  • DOI: 10.1002/bit.21047

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

X-ray Structure of Mercerized Cellulose II at 1 Å Resolution
journal, June 2001

  • Langan, Paul; Nishiyama, Yoshiharu; Chanzy, Henri
  • Biomacromolecules, Vol. 2, Issue 2
  • DOI: 10.1021/bm005612q

Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions
journal, January 2012


The Stability of Cellulose: A Statistical Perspective from a Coarse-Grained Model of Hydrogen-Bond Networks
journal, April 2009


Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review
journal, July 2010


Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution
journal, June 2002

  • Zhang, Lina; Ruan, Dong; Gao, Shanjun
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 40, Issue 14
  • DOI: 10.1002/polb.10215

Effects of Cationic Structure on Cellulose Dissolution in Ionic Liquids: A Molecular Dynamics Study
journal, June 2012


Exploring new strategies for cellulosic biofuels production
journal, January 2011

  • Langan, Paul; Gnanakaran, S.; Rector, Kirk D.
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01268a

Correlations in the Structure and Dynamics of Ionic Liquids
journal, January 2009

  • Gray-Weale, Angus
  • Australian Journal of Chemistry, Vol. 62, Issue 4
  • DOI: 10.1071/CH09056

Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature
journal, March 2011


Understanding the Interactions of Cellulose with Ionic Liquids: A Molecular Dynamics Study
journal, April 2010

  • Liu, Hanbin; Sale, Kenneth L.; Holmes, Bradley M.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 12
  • DOI: 10.1021/jp9117437

GLYCAM06: A generalizable biomolecular force field. Carbohydrates: GLYCAM06
journal, September 2007

  • Kirschner, Karl N.; Yongye, Austin B.; Tschampel, Sarah M.
  • Journal of Computational Chemistry, Vol. 29, Issue 4
  • DOI: 10.1002/jcc.20820

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes
journal, January 2005


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl
journal, October 2006


Probing the Early Events Associated with Liquid Ammonia Pretreatment of Native Crystalline Cellulose
journal, August 2011

  • Bellesia, Giovanni; Chundawat, Shishir P. S.; Langan, Paul
  • The Journal of Physical Chemistry B, Vol. 115, Issue 32
  • DOI: 10.1021/jp2048844

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

Thermal Response in Crystalline Iβ Cellulose:  A Molecular Dynamics Study
journal, August 2007

  • Bergenstråhle, Malin; Berglund, Lars A.; Mazeau, Karim
  • The Journal of Physical Chemistry B, Vol. 111, Issue 30
  • DOI: 10.1021/jp072258i

The solvation structures of cellulose microfibrils in ionic liquids
journal, December 2011

  • Mostofian, Barmak; Smith, Jeremy C.; Cheng, Xiaolin
  • Interdisciplinary Sciences: Computational Life Sciences, Vol. 3, Issue 4
  • DOI: 10.1007/s12539-011-0111-8

Computer simulation studies of microcrystalline cellulose Iβ
journal, January 2006


Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient
journal, December 2008

  • Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud
  • The Journal of Chemical Physics, Vol. 129, Issue 22
  • DOI: 10.1063/1.3035978

High-Temperature Behavior of Cellulose I
journal, March 2011

  • Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 10
  • DOI: 10.1021/jp1106839

Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids
journal, October 2008

  • Rinaldi, Roberto; Palkovits, Regina; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 47, Issue 42, p. 8047-8050
  • DOI: 10.1002/anie.200802879

Crystal Structure and Hydrogen Bonding System in Cellulose I α from Synchrotron X-ray and Neutron Fiber Diffraction
journal, November 2003

  • Nishiyama, Yoshiharu; Sugiyama, Junji; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 125, Issue 47
  • DOI: 10.1021/ja037055w

High-throughput screening for ionic liquids dissolving (ligno-)cellulose
journal, May 2009


Role of Cation Symmetry in Intermolecular Structure and Dynamics of Room Temperature Ionic Liquids: Simulation Studies
journal, May 2010

  • Raju, S. G.; Balasubramanian, S.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 19
  • DOI: 10.1021/jp9120673

On the Molecular Origins of Biomass Recalcitrance: The Interaction Network and Solvation Structures of Cellulose Microfibrils
journal, October 2010

  • Gross, Adam S.; Chu, Jhih-Wei
  • The Journal of Physical Chemistry B, Vol. 114, Issue 42
  • DOI: 10.1021/jp106452m

Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction
journal, August 2002

  • Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 124, Issue 31
  • DOI: 10.1021/ja0257319

Ionic liquid processing of cellulose
journal, January 2012

  • Wang, Hui; Gurau, Gabriela; Rogers, Robin D.
  • Chemical Society Reviews, Vol. 41, Issue 4
  • DOI: 10.1039/c2cs15311d

Interactions of Ionic Liquids with Polysaccharides – 2: Cellulose
journal, January 2008

  • Heinze, Thomas; Dorn, Susann; Schöbitz, Michael
  • Macromolecular Symposia, Vol. 262, Issue 1
  • DOI: 10.1002/masy.200850202

VMD: Visual molecular dynamics
journal, February 1996


Design of Cellulose Dissolving Ionic Liquids Inspired by Nature
journal, January 2012


Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment
journal, April 2007

  • Dadi, Anantharam P.; Schall, Constance A.; Varanasi, Sasidhar
  • Applied Biochemistry and Biotechnology, Vol. 137-140, Issue 1-12, p. 407-421
  • DOI: 10.1007/s12010-007-9068-9

Dissecting Force Interactions in Cellulose Deconstruction Reveals the Required Solvent Versatility for Overcoming Biomass Recalcitrance
journal, September 2011

  • Cho, Hyung Min; Gross, Adam S.; Chu, Jhih-Wei
  • Journal of the American Chemical Society, Vol. 133, Issue 35
  • DOI: 10.1021/ja2046155

Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]
journal, September 2007

  • Bhargava, B. L.; Balasubramanian, S.
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2772268

Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations
journal, January 2005

  • Urahata, Sérgio M.; Ribeiro, Mauro C. C.
  • The Journal of Chemical Physics, Vol. 122, Issue 2
  • DOI: 10.1063/1.1826035

High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions
journal, January 2005

  • Moulthrop, Jason S.; Swatloski, Richard P.; Moyna, Guillermo
  • Chemical Communications, Issue 12
  • DOI: 10.1039/b417745b

Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis
journal, November 2010


Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride
journal, January 2012

  • Gross, Adam S.; Bell, Alexis T.; Chu, Jhih-Wei
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 23
  • DOI: 10.1039/c2cp40417f

A Revised Structure and Hydrogen-Bonding System in Cellulose II from a Neutron Fiber Diffraction Analysis
journal, November 1999

  • Langan, P.; Nishiyama, Y.; Chanzy, H.
  • Journal of the American Chemical Society, Vol. 121, Issue 43
  • DOI: 10.1021/ja9916254

Glucose Solvation by the Ionic Liquid 1,3-Dimethylimidazolium Chloride:  A Simulation Study
journal, December 2007

  • Youngs, T. G. A.; Hardacre, C.; Holbrey, J. D.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 49
  • DOI: 10.1021/jp076728k

Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate
journal, July 2011

  • Chundawat, Shishir P. S.; Bellesia, Giovanni; Uppugundla, Nirmal
  • Journal of the American Chemical Society, Vol. 133, Issue 29
  • DOI: 10.1021/ja2011115

Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses
journal, March 2007


Transfer matrix approach to the hydrogen-bonding in cellulose I α fibrils describes the recalcitrance to thermal deconstruction
journal, August 2011

  • Klein, Heinrich C. R.; Cheng, Xiaolin; Smith, Jeremy C.
  • The Journal of Chemical Physics, Vol. 135, Issue 8
  • DOI: 10.1063/1.3626274

About the structure of cellulose: debating the Lindman hypothesis
journal, March 2012


LINCS: A linear constraint solver for molecular simulations
journal, September 1997


On the mechanism of dissolution of cellulose
journal, September 2010


Ionic-Liquid Induced Changes in Cellulose Structure Associated with Enhanced Biomass Hydrolysis
journal, August 2011

  • Samayam, Indira P.; Hanson, B. Leif; Langan, Paul
  • Biomacromolecules, Vol. 12, Issue 8
  • DOI: 10.1021/bm200736a

Swelling behavior of the cellulose Iβ crystal models by molecular dynamics
journal, November 2006


Applications of Ionic Liquids in Carbohydrate Chemistry:  A Window of Opportunities
journal, September 2007

  • El Seoud, Omar A.; Koschella, Andreas; Fidale, Ludmila C.
  • Biomacromolecules, Vol. 8, Issue 9
  • DOI: 10.1021/bm070062i

Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?
journal, January 2011

  • Sun, Ning; Rodríguez, Héctor; Rahman, Mustafizur
  • Chem. Commun., Vol. 47, Issue 5
  • DOI: 10.1039/C0CC03990J

Computer Simulation of a “Green Chemistry” Room-Temperature Ionic Solvent
journal, November 2002

  • Margulis, C. J.; Stern, H. A.; Berne, B. J.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 46
  • DOI: 10.1021/jp021392u

Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes
journal, January 2001

  • Muldoon, Mark J.; Gordon, Charles M.; Dunkin, Ian R.
  • Journal of the Chemical Society, Perkin Transactions 2, Issue 4
  • DOI: 10.1039/b101449h

A smooth particle mesh Ewald method
journal, November 1995

  • Essmann, Ulrich; Perera, Lalith; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 103, Issue 19
  • DOI: 10.1063/1.470117

Ionic Liquids — Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose
journal, June 2012


A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids
journal, August 2004

  • Liu, Zhiping; Huang, Shiping; Wang, Wenchuan
  • The Journal of Physical Chemistry B, Vol. 108, Issue 34
  • DOI: 10.1021/jp048369o

Sustainable chemistry: imidazolium salts in biomass conversion and CO 2 fixation
journal, January 2010

  • Zhang, Yugen; Chan, Jin Young Gerentt
  • Energy Environ. Sci., Vol. 3, Issue 4
  • DOI: 10.1039/B914206A

Design of Polar Ionic Liquids To Solubilize Cellulose without Heating
book, January 2010


Dissolution of Cellulose in Ionic Liquids and Its Application for Cellulose Processing and Modification
book, January 2010


Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids
journal, October 2008

  • Rinaldi, Roberto; Palkovits, Regina; Schüth, Ferdi
  • Angewandte Chemie, Vol. 120, Issue 42
  • DOI: 10.1002/ange.200802879

Improving the specificity of organophosphorus hydrolase to acephate by mutagenesis at its binding site: a computational study
journal, May 2021

  • Badakhshan, Reza; Mohammadi, Mozafar; Farnoosh, Gholamreza
  • Journal of Molecular Modeling, Vol. 27, Issue 6
  • DOI: 10.1007/s00894-021-04749-6

Dissolution of Cellulose with Ionic Liquids and Its Application: A Mini-Review
journal, July 2006


Works referencing / citing this record:

Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy
journal, October 2018


Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study
journal, January 2015

  • Li, Yao; Liu, Xiaomin; Zhang, Suojiang
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 27
  • DOI: 10.1039/c5cp02009c

Dissolution and Hydrolysis of Bleached Kraft Pulp Using Ionic Liquids
journal, April 2019

  • Reyes, Guillermo; Aguayo, María Graciela; Fernández Pérez, Arturo
  • Polymers, Vol. 11, Issue 4
  • DOI: 10.3390/polym11040673