skip to main content


This content will become publicly available on April 9, 2018

Title: Simulations of Lithium-Magnetite Electrodes Incorporating Phase Change

In this work, the phase changes occurring in magnetite (Fe 3O 4) during lithiation and voltage recovery experiments are modeled using a model that simulates the electrochemical performance of a Fe 3O 4 electrode by coupling the lithium transport in the agglomerate and nano-crystal length-scales to thermodynamic and kinetic expressions. Phase changes are described using kinetic expressions based on the Avrami theory for nucleation and growth. Also, simulated results indicate that the slow, linear voltage change observed at long times during the voltage recovery experiments can be attributed to a slow phase change from α-Li xFe 3O 4 to β-Li 4Fe 3O 4. In addition, the long voltage plateau at ~1.2 V observed during lithiation of electrodes is attributed to conversion from α-Li xFe 3O 4 to γ-(4 Li 2O + 3 Fe). Simulations for the lithiation of 6 and 32 nm Fe 3O 4 suggest the rate of conversion to γ-(4 Li 2O + 3 Fe) decreases with decreasing crystal size.
 [1] ;  [2] ;  [1] ;  [3] ;  [3] ;  [4] ;  [1]
  1. Columbia Univ., New York, NY (United States). Department of Chemical Engineering
  2. Stony Brook Univ., NY (United States). Dept. of Chemistry
  3. Stony Brook Univ., NY (United States). Dept. of Chemistry and Dept. of Materials Science and Engineering
  4. Stony Brook Univ., NY (United States). Dept. of Chemistry and Dept. of Materials Science and Engineering; Brookhaven National Lab. (BNL), Upton, NY (United States). Energy Sciences Directorate
Publication Date:
Report Number(s):
Journal ID: ISSN 0013-4686
Grant/Contract Number:
SC0012704; SC0012673
Accepted Manuscript
Journal Name:
Electrochimica Acta
Additional Journal Information:
Journal Volume: 238; Journal ID: ISSN 0013-4686
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Nucleation and growth; voltage recovery; current interrupt; lithium-ion batteries; Avrami
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1413354