DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Confinement in Wendelstein 7-X Limiter Plasmas

Abstract

Observations on confinement in the first experimental campaign on the optimized Stellarator Wendelstein 7-X are summarized. In this phase W7-X was equipped with five inboard limiters only and thus the discharge length restricted to avoid local overheating. Stationary plasmas are limited to low densities <2–3 centerdot 1019 m-3. With the available 4.3 MW ECR Heating core Te ~ 8 keV, Ti ~ 1–2 keV are achieved routinely resulting in energy confinement time τE between 80 ms to 150 ms. For these conditions the plasmas show characteristics of core electron root confinement with peaked Te-profiles and positive Er up to about half of the minor radius. Lastly, profiles and plasma currents respond to on- and off-axis heating and co- and counter ECCD respectively.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [2];  [3];  [1];  [2] more »;  [3];  [1];  [1];  [4];  [1];  [1];  [1];  [1];  [5];  [1];  [1];  [6];  [3];  [1];  [3];  [7];  [1];  [1];  [8];  [1];  [1];  [1];  [9];  [1];  [1];  [1];  [8];  [1];  [10];  [1];  [1];  [1];  [11];  [5];  [1];  [1];  [1];  [12];  [1];  [13];  [1];  [1];  [1];  [1]; ORCiD logo [14];  [1] « less
  1. Max Planck Inst. for Plasma Physics, Greifswald (Germany)
  2. Research Centre for Energy, Environment and Technology (CIEMAT), Madrid (Spain)
  3. Inst. of Plasma Physics and Laser Microfusion (IPPLM), Warsaw (Poland)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Hungarian Academy of Sciences, Budapest (Hungary). Wigner Inst.
  6. Forschungszentrum Julich (Germany)
  7. Opole Univ. (Poland)
  8. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  9. Alternative Energies and Atomic Energy Commission (CEA), Cadarache (France)
  10. Univ. of Cagliari (Italy)
  11. Univ. of Wisconsin, Madison, WI (United States)
  12. National Inst. for Fusion Science (NIFS), Toki (Japan)
  13. Ecole Royale Militaire, Koninklijke Militaire School (ERM-KMS), Brussels (Belgium). Lab. for Plasma Physics
  14. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Fusion Energy Sciences (FES) (SC-24); European Union (EU); USDOE
Contributing Org.:
EUROfusion Consortium; Wendelstein Team (W7-X); the W7-X Team
OSTI Identifier:
1369186
Alternate Identifier(s):
OSTI ID: 1375764
Report Number(s):
LA-UR-16-27307
Journal ID: ISSN 0029-5515
Grant/Contract Number:  
AC52-06NA25396; 633053
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 57; Journal Issue: 8; Conference: 26. IAEA Fusion Energy Conference , Kyoto (Japan), 17-22 Oct 2016; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Magnetic Fusion Energy; Wedelstein 7-X, stellarator, fusion, energy balance, particle confinement

Citation Formats

Hirsch, M., Dinklage, A., Alonso, A., Fuchert, G., Bozhenkov, S., Hoefel, U., Andreeva, T., Baldzuhn, J., Beurskens, M., Bosch, H. S., Beidler, C. D., Biedermann, C., Blanco, E., Brakel, R., Burhenn, R., Buttenschoen, B., Cappa, A., Czarnecka, A., Endler, M., Estrada, T., Fornal, T., Geiger, J., Grulke, O., Harris, J. H., Hartmann, D., Jakubowski, M., Klinger, T., Knauer, J., Kocsis, G., Koenig, R., Kornejew, P., Kraemer-Flecken, A., Krawczyk, N., Krychowiak, M., Kubkowska, M., Ksiazek, I., Langenberg, A., Laqua, H. P., Lazerson, S., Maassberg, H., Marushchenko, N., Marsen, S., Moncada, V., Moseev, D., Naujoks, D., Otte, M., Pablant, N., Pasch, E., Pisano, F., Rahbarnia, K., Schroeder, T., Stange, T., Stephey, L., Szepesi, T., Pedersen, T. Sunn, Mora, H. Trimino, Thomsen, H., Tsuchiya, H., Turkin, Yu., Wauters, T., Weir, G., Wenzel, U., Werner, A., Wolf, R., Wurden, G. A., and Zhang, D. Confinement in Wendelstein 7-X Limiter Plasmas. United States: N. p., 2017. Web. doi:10.1088/1741-4326/aa7372.
Hirsch, M., Dinklage, A., Alonso, A., Fuchert, G., Bozhenkov, S., Hoefel, U., Andreeva, T., Baldzuhn, J., Beurskens, M., Bosch, H. S., Beidler, C. D., Biedermann, C., Blanco, E., Brakel, R., Burhenn, R., Buttenschoen, B., Cappa, A., Czarnecka, A., Endler, M., Estrada, T., Fornal, T., Geiger, J., Grulke, O., Harris, J. H., Hartmann, D., Jakubowski, M., Klinger, T., Knauer, J., Kocsis, G., Koenig, R., Kornejew, P., Kraemer-Flecken, A., Krawczyk, N., Krychowiak, M., Kubkowska, M., Ksiazek, I., Langenberg, A., Laqua, H. P., Lazerson, S., Maassberg, H., Marushchenko, N., Marsen, S., Moncada, V., Moseev, D., Naujoks, D., Otte, M., Pablant, N., Pasch, E., Pisano, F., Rahbarnia, K., Schroeder, T., Stange, T., Stephey, L., Szepesi, T., Pedersen, T. Sunn, Mora, H. Trimino, Thomsen, H., Tsuchiya, H., Turkin, Yu., Wauters, T., Weir, G., Wenzel, U., Werner, A., Wolf, R., Wurden, G. A., & Zhang, D. Confinement in Wendelstein 7-X Limiter Plasmas. United States. https://doi.org/10.1088/1741-4326/aa7372
Hirsch, M., Dinklage, A., Alonso, A., Fuchert, G., Bozhenkov, S., Hoefel, U., Andreeva, T., Baldzuhn, J., Beurskens, M., Bosch, H. S., Beidler, C. D., Biedermann, C., Blanco, E., Brakel, R., Burhenn, R., Buttenschoen, B., Cappa, A., Czarnecka, A., Endler, M., Estrada, T., Fornal, T., Geiger, J., Grulke, O., Harris, J. H., Hartmann, D., Jakubowski, M., Klinger, T., Knauer, J., Kocsis, G., Koenig, R., Kornejew, P., Kraemer-Flecken, A., Krawczyk, N., Krychowiak, M., Kubkowska, M., Ksiazek, I., Langenberg, A., Laqua, H. P., Lazerson, S., Maassberg, H., Marushchenko, N., Marsen, S., Moncada, V., Moseev, D., Naujoks, D., Otte, M., Pablant, N., Pasch, E., Pisano, F., Rahbarnia, K., Schroeder, T., Stange, T., Stephey, L., Szepesi, T., Pedersen, T. Sunn, Mora, H. Trimino, Thomsen, H., Tsuchiya, H., Turkin, Yu., Wauters, T., Weir, G., Wenzel, U., Werner, A., Wolf, R., Wurden, G. A., and Zhang, D. Wed . "Confinement in Wendelstein 7-X Limiter Plasmas". United States. https://doi.org/10.1088/1741-4326/aa7372. https://www.osti.gov/servlets/purl/1369186.
@article{osti_1369186,
title = {Confinement in Wendelstein 7-X Limiter Plasmas},
author = {Hirsch, M. and Dinklage, A. and Alonso, A. and Fuchert, G. and Bozhenkov, S. and Hoefel, U. and Andreeva, T. and Baldzuhn, J. and Beurskens, M. and Bosch, H. S. and Beidler, C. D. and Biedermann, C. and Blanco, E. and Brakel, R. and Burhenn, R. and Buttenschoen, B. and Cappa, A. and Czarnecka, A. and Endler, M. and Estrada, T. and Fornal, T. and Geiger, J. and Grulke, O. and Harris, J. H. and Hartmann, D. and Jakubowski, M. and Klinger, T. and Knauer, J. and Kocsis, G. and Koenig, R. and Kornejew, P. and Kraemer-Flecken, A. and Krawczyk, N. and Krychowiak, M. and Kubkowska, M. and Ksiazek, I. and Langenberg, A. and Laqua, H. P. and Lazerson, S. and Maassberg, H. and Marushchenko, N. and Marsen, S. and Moncada, V. and Moseev, D. and Naujoks, D. and Otte, M. and Pablant, N. and Pasch, E. and Pisano, F. and Rahbarnia, K. and Schroeder, T. and Stange, T. and Stephey, L. and Szepesi, T. and Pedersen, T. Sunn and Mora, H. Trimino and Thomsen, H. and Tsuchiya, H. and Turkin, Yu. and Wauters, T. and Weir, G. and Wenzel, U. and Werner, A. and Wolf, R. and Wurden, G. A. and Zhang, D.},
abstractNote = {Observations on confinement in the first experimental campaign on the optimized Stellarator Wendelstein 7-X are summarized. In this phase W7-X was equipped with five inboard limiters only and thus the discharge length restricted to avoid local overheating. Stationary plasmas are limited to low densities <2–3 centerdot 1019 m-3. With the available 4.3 MW ECR Heating core Te ~ 8 keV, Ti ~ 1–2 keV are achieved routinely resulting in energy confinement time τE between 80 ms to 150 ms. For these conditions the plasmas show characteristics of core electron root confinement with peaked Te-profiles and positive Er up to about half of the minor radius. Lastly, profiles and plasma currents respond to on- and off-axis heating and co- and counter ECCD respectively.},
doi = {10.1088/1741-4326/aa7372},
journal = {Nuclear Fusion},
number = 8,
volume = 57,
place = {United States},
year = {Wed Jun 14 00:00:00 EDT 2017},
month = {Wed Jun 14 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ray-tracing code TRAVIS for ECR heating, EC current drive and ECE diagnostic
journal, January 2014

  • Marushchenko, N. B.; Turkin, Y.; Maassberg, H.
  • Computer Physics Communications, Vol. 185, Issue 1
  • DOI: 10.1016/j.cpc.2013.09.002

Comparison between stellarator and tokamak divertor transport
journal, January 2011


New Advanced Operational Regime on the W7-AS Stellarator
journal, June 2002


Characterization of energy confinement in net-current free plasmas using the extended International Stellarator Database
journal, November 2005


Major results from the stellarator Wendelstein 7-AS
journal, March 2008


Variational bounds for transport coefficients in three‐dimensional toroidal plasmas
journal, March 1989

  • van Rij, W. I.; Hirshman, S. P.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 3
  • DOI: 10.1063/1.859116

Setup and initial results from the magnetic flux surface diagnostics at Wendelstein 7-X
journal, May 2016


Limiter observations during W7-X first plasmas
journal, April 2017


Investigation of turbulence rotation in limiter plasmas at W7-X with newly installed poloidal correlation reflectometer
journal, April 2017


Core electron-root confinement (CERC) in helical plasmas
journal, August 2007


Performance and properties of the first plasmas of Wendelstein 7-X
journal, October 2016


Stable stellarators with medium β and aspect ratio
journal, February 1986


Physics optimization of stellarators
journal, March 1992

  • Grieger, G.; Lotz, W.; Merkel, P.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 7
  • DOI: 10.1063/1.860481

Three-dimensional free boundary calculations using a spectral Green's function method
journal, December 1986


High-density plasma with internal diffusion barrier in the Large Helical Device
journal, July 2009


Plans for the first plasma operation of Wendelstein 7-X
journal, November 2015


Works referencing / citing this record:

Global energy confinement in the initial limiter configuration of Wendelstein 7-X
journal, August 2018


Major results from the first plasma campaign of the Wendelstein 7-X stellarator
journal, July 2017


Radial energy flux during destabilized Alfvén eigenmodes
journal, October 2018

  • Kolesnichenko, Ya. I.; Tykhyy, A. V.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5048380

Magnetic configuration effects on the Wendelstein 7-X stellarator
journal, May 2018


Poloidal correlation reflectometry at W7-X: radial electric field and coherent fluctuations
journal, August 2017

  • Windisch, T.; Krämer-Flecken, A.; Velasco, Jl
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 10
  • DOI: 10.1088/1361-6587/aa759b

Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies
journal, November 2018

  • Wolf, R. C.; Bozhenkov, S.; Dinklage, A.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaeab2