skip to main content


Title: Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth

A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance, I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solutionmore » for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI  have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 9; Journal Issue: 8; Journal ID: ISSN 1867-8548
European Geosciences Union
Research Org:
Univ. of California, San Diego, La Jolla, CA (United States). Center for Renewable Resources and Integration, Department of Mechanical and Aerospace Engineering
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier: