skip to main content


Title: Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm

This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations on a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.
 [1] ;  [1] ;  [1] ; ORCiD logo [2] ;  [1] ;  [1]
  1. Aalborg Univ., Aalborg (Denmark)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1996-1073; ENERGA
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Energies (Basel)
Additional Journal Information:
Journal Name: Energies (Basel); Journal Volume: 10; Journal Issue: 7; Journal ID: ISSN 1996-1073
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
17 WIND ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION; doubly fed induction generator; reactive power dispatch; wind farm; loss minimization
OSTI Identifier: