skip to main content

DOE PAGESDOE PAGES

Title: Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed with zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlledmore » particles (AFM tips and glass spheres) and real dust particles.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5K00-67734
Journal ID: ISSN 0927-0248
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Solar Energy Materials and Solar Cells
Additional Journal Information:
Journal Volume: 172; Journal Issue: C; Journal ID: ISSN 0927-0248
Publisher:
Elsevier
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; soiling mechanisms; Van der Waals forces; capillary forces; relative humidity; surface roughness; dust particles
OSTI Identifier:
1375106