skip to main content


Title: Integrated Biorefining: Coproduction of Renewable Resol Biopolymer for Aqueous Stream Valorization

Phenol-formaldehyde resins are major material classes that are used in a range of applications including composites, adhesives, foams, electronics, and insulation. While efforts have been made to produce renewable resins, there has yet to be an approach that offers potential for economic viability and meets all critical quality metrics. This failure can be attributed largely to the use of phenol and cresol homologues and to high separation costs. In this work, the use of phenol, cresol, and alkyl phenols derived from the aqueous phase generated from catalytic fast pyrolysis of biomass to produce a high-quality biobased resin is demonstrated. Production, through catalytic fast pyrolysis (CFP), separation, through distillation and adsorption unit operations, and synthesis, through typical resol chemistry, produced a resin with properties, such as curing kinetics and molecular weight, competitive with petroleum-derived resin. In conclusion, this work explores a pathway to value-added coproducts from a CFP waste stream, which has the potential to improve the economic viability of biofuels production.
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2168-0485
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 5; Journal Issue: 8; Journal ID: ISSN 2168-0485
American Chemical Society (ACS)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
09 BIOMASS FUELS; biopolymer; biorefining; coproduct; resin; valorization
OSTI Identifier: