DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery

Abstract

Li-S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed "solvates" that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN)2-LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li-S cell and the solvation structure of the (MeCN)2-LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li+ at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent,more » in the electrolyte. Furthermore, the electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li-S cell likely as a result of the solvation power of the free MeCN.« less

Authors:
 [1];  [1];  [2];  [1];  [3];  [3];  [3];  [3]; ORCiD logo [1]
  1. Joint Center for Energy Storage Research, Argonne, IL (United States); Univ. of Illinois at Urbana - Champaign, Urbana, IL (United States)
  2. Joint Center for Energy Storage Research, Argonne, IL (United States); California State Univ., Northridge, CA (United States)
  3. Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1374850
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 50; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; hydrofluoroether cosolvent; in situ Raman spectroscopy; lithium−sulfur battery; solvate electrolyte; sulfur reduction kinetics

Citation Formats

See, Kimberly A., Wu, Heng -Liang, Lau, Kah Chun, Shin, Minjeong, Cheng, Lei, Balasubramanian, Mahalingam, Gallagher, Kevin G., Curtiss, Larry A., and Gewirth, Andrew A. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery. United States: N. p., 2016. Web. doi:10.1021/acsami.6b11358.
See, Kimberly A., Wu, Heng -Liang, Lau, Kah Chun, Shin, Minjeong, Cheng, Lei, Balasubramanian, Mahalingam, Gallagher, Kevin G., Curtiss, Larry A., & Gewirth, Andrew A. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery. United States. https://doi.org/10.1021/acsami.6b11358
See, Kimberly A., Wu, Heng -Liang, Lau, Kah Chun, Shin, Minjeong, Cheng, Lei, Balasubramanian, Mahalingam, Gallagher, Kevin G., Curtiss, Larry A., and Gewirth, Andrew A. Wed . "Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery". United States. https://doi.org/10.1021/acsami.6b11358. https://www.osti.gov/servlets/purl/1374850.
@article{osti_1374850,
title = {Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery},
author = {See, Kimberly A. and Wu, Heng -Liang and Lau, Kah Chun and Shin, Minjeong and Cheng, Lei and Balasubramanian, Mahalingam and Gallagher, Kevin G. and Curtiss, Larry A. and Gewirth, Andrew A.},
abstractNote = {Li-S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed "solvates" that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN)2-LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li-S cell and the solvation structure of the (MeCN)2-LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li+ at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent, in the electrolyte. Furthermore, the electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li-S cell likely as a result of the solvation power of the free MeCN.},
doi = {10.1021/acsami.6b11358},
journal = {ACS Applied Materials and Interfaces},
number = 50,
volume = 8,
place = {United States},
year = {Wed Nov 16 00:00:00 EST 2016},
month = {Wed Nov 16 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Lithium Sulfur Battery: Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions
journal, January 1988

  • Yamin, H.; Gorenshtein, A.; Penciner, J.
  • Journal of The Electrochemical Society, Vol. 135, Issue 5, p. 1045-1048
  • DOI: 10.1149/1.2095868

Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries
journal, June 2014

  • Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 24, Issue 33
  • DOI: 10.1002/adfm.201400845

Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells
journal, November 2012


On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

In Situ Raman Spectroscopy of Sulfur Speciation in Lithium–Sulfur Batteries
journal, January 2015

  • Wu, Heng-Liang; Huff, Laura A.; Gewirth, Andrew A.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am5072942

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries
journal, August 2016


Polysulfide dissolution control: the common ion effect
journal, January 2013

  • Shin, Eon Sung; Kim, Keon; Oh, Si Hyoung
  • Chem. Commun., Vol. 49, Issue 20
  • DOI: 10.1039/C2CC36986A

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Solvate Ionic Liquid Electrolyte for Li–S Batteries
journal, January 2013

  • Dokko, Kaoru; Tachikawa, Naoki; Yamauchi, Kento
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.111308jes

Glyme–Lithium Salt Equimolar Molten Mixtures: Concentrated Solutions or Solvate Ionic Liquids?
journal, August 2012

  • Ueno, Kazuhide; Yoshida, Kazuki; Tsuchiya, Mizuho
  • The Journal of Physical Chemistry B, Vol. 116, Issue 36
  • DOI: 10.1021/jp307378j

Li + solvation in glyme–Li salt solvate ionic liquids
journal, January 2015

  • Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05943C

Li + Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid
journal, March 2016

  • Saito, Soshi; Watanabe, Hikari; Ueno, Kazuhide
  • The Journal of Physical Chemistry B, Vol. 120, Issue 13
  • DOI: 10.1021/acs.jpcb.5b12354

Ab Initio Structure Search and in Situ 7 Li NMR Studies of Discharge Products in the Li–S Battery System
journal, November 2014

  • See, Kimberly A.; Leskes, Michal; Griffin, John M.
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja508982p

Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Electrolyte Solvation and Ionic Association: V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures
journal, January 2014

  • Han, Sang-Don; Borodin, Oleg; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0101414jes

Safety Studies on Li /  SO 2 Cells: I . Differential Thermal Analysis (DTA) of Cell Constituents
journal, October 1979

  • Dey, A. N.; Holmes, R. W.
  • Journal of The Electrochemical Society, Vol. 126, Issue 10
  • DOI: 10.1149/1.2128767

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte
journal, June 2014

  • Sodeyama, Keitaro; Yamada, Yuki; Aikawa, Koharu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 26, p. 14091-14097
  • DOI: 10.1021/jp501178n

Application of Partially Fluorinated Ether for Improving Performance of Lithium/Sulfur Batteries
journal, January 2015

  • Lu, Hai; Yuan, Yan; Zhang, Kai
  • Journal of The Electrochemical Society, Vol. 162, Issue 8
  • DOI: 10.1149/2.0281508jes

Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes
journal, January 2007


Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte
journal, January 2015

  • Zu, Chenxi; Azimi, Nasim; Zhang, Zhengcheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA03195H

Understanding the Effect of a Fluorinated Ether on the Performance of Lithium–Sulfur Batteries
journal, April 2015

  • Azimi, Nasim; Xue, Zheng; Bloom, Ira
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 17
  • DOI: 10.1021/acsami.5b01412

Improved performance of lithium–sulfur battery with fluorinated electrolyte
journal, December 2013


Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries
journal, May 2014

  • Gordin, Mikhail L.; Dai, Fang; Chen, Shuru
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501665s

In Situ EQCM Study Examining Irreversible Changes the Sulfur–Carbon Cathode in Lithium–Sulfur Batteries
journal, September 2015

  • Wu, Heng-Liang; Huff, Laura A.; Esbenshade, Jennifer L.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 37
  • DOI: 10.1021/acsami.5b05955

Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment
journal, August 2011

  • Long, Brandon R.; Chan, Maria K. Y.; Greeley, Jeffrey P.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 38
  • DOI: 10.1021/jp2060602

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Energy fluctuations induced by the Nosé thermostat
journal, December 1992


Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
journal, November 1994

  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.
  • The Journal of Physical Chemistry, Vol. 98, Issue 45, p. 11623-11627
  • DOI: 10.1021/j100096a001

Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

The cycling performances of lithium–sulfur batteries in TEGDME/DOL containing LiNO3 additive
journal, June 2013


Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries
journal, May 2015


Probing the Lithium–Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study
journal, March 2014

  • Lu, Yi-Chun; He, Qi; Gasteiger, Hubert A.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp500382s

Electrochemical reduction of sulfur in aprotic solvents
journal, August 1973

  • Martin, Robert P.; Doub, William H.; Roberts, Julian L.
  • Inorganic Chemistry, Vol. 12, Issue 8
  • DOI: 10.1021/ic50126a047

Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge
journal, January 2012

  • Yeon, Jin-Tak; Jang, Jun-Young; Han, Jung-Gu
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.080208jes

Electrochemical Reduction of Elemental Sulfur in Acetonitrile
journal, October 1980

  • Fujinaga, Taitiro; Kuwamoto, Tooru; Okazaki, Satoshi
  • Bulletin of the Chemical Society of Japan, Vol. 53, Issue 10
  • DOI: 10.1246/bcsj.53.2851

Ion Association and Ion Solvation Effects at the Crystalline−Amorphous Phase Transition in PEO−LiTFSI
journal, August 2000

  • Edman, Ludvig
  • The Journal of Physical Chemistry B, Vol. 104, Issue 31
  • DOI: 10.1021/jp000082d

Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI−)
journal, January 2005

  • Herstedt, M.; Smirnov, M.; Johansson, P.
  • Journal of Raman Spectroscopy, Vol. 36, Issue 8
  • DOI: 10.1002/jrs.1347

Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts
journal, January 2012

  • Seo, Daniel M.; Borodin, Oleg; Han, Sang-Don
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.035209jes

Raman spectrum of acetonitrile
journal, December 1964

  • Neelakantan, P.
  • Proceedings of the Indian Academy of Sciences - Section A, Vol. 60, Issue 6
  • DOI: 10.1007/BF03047422

On the secondary structure of some vibrational bands of acetonitrile
journal, January 1976


Exothermic Reactions among Components of Lithium‐Sulfur Dioxide and Lithium‐Thionyl Chloride Cells
journal, March 1981

  • Dallek, S.; James, S. D.; Kilroy, W. P.
  • Journal of The Electrochemical Society, Vol. 128, Issue 3
  • DOI: 10.1149/1.2127447

Spectroscopic studies of ionic solvation. XVI. Lithium-7 and chlorine-35 nuclear magnetic resonance studies in various solvents
journal, January 1975

  • Cahen, Yves M.; Handy, Paul R.; Roach, Eric T.
  • The Journal of Physical Chemistry, Vol. 79, Issue 1
  • DOI: 10.1021/j100568a018

Relaxation Effects in Nuclear Magnetic Resonance Absorption
journal, April 1948


Nuclear magnetic resonance in lithium chloride solutions
journal, January 1963

  • Craig, R. A.; Richards, R. E.
  • Transactions of the Faraday Society, Vol. 59
  • DOI: 10.1039/tf9635901972

The effect of coordinating and non-coordinating additives on the transport properties in ionic liquid electrolytes for lithium batteries
journal, January 2011

  • Bayley, Paul M.; Best, A. S.; MacFarlane, D. R.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 10
  • DOI: 10.1039/c0cp02084b

NMR T 1 relaxation time measurements and calculations with translational and rotational components for liquid electrolytes containing LiBF 4 and propylene carbonate
journal, December 2013

  • Richardson, P. M.; Voice, A. M.; Ward, I. M.
  • The Journal of Chemical Physics, Vol. 139, Issue 21
  • DOI: 10.1063/1.4832038

A 7Li and 19F NMR relaxation study of LiCF3SO3 in plasticised solid polyether electrolytes
journal, December 1995


Works referencing / citing this record:

Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
journal, August 2018


Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries
journal, July 2018

  • Wang, Lili; Ye, Yusheng; Chen, Nan
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201800919

In Situ Techniques for Developing Robust Li-S Batteries
journal, August 2018


High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries
journal, October 2017

  • Preefer, Molleigh B.; Oschmann, Bernd; Hawker, Craig J.
  • Angewandte Chemie, Vol. 129, Issue 47
  • DOI: 10.1002/ange.201708746

Polysulfide Shuttle Suppression by Electrolytes with Low‐Density for High‐Energy Lithium–Sulfur Batteries
journal, May 2019

  • Weller, Christine; Pampel, Jonas; Dörfler, Susanne
  • Energy Technology, Vol. 7, Issue 12
  • DOI: 10.1002/ente.201900625

An Aggregate Cluster-Dispersed Electrolyte Guides the Uniform Nucleation and Growth of Lithium at Lithium Metal Anodes
journal, November 2018


High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries
journal, October 2017

  • Preefer, Molleigh B.; Oschmann, Bernd; Hawker, Craig J.
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201708746

Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries
journal, May 2017