DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost

Abstract

Abstract Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long‐term Arctic monitoring. We applied seismic interferometry, using moving window cross‐spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active‐layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle‐skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variations that are then accumulated to recover the full seasonal change. This approach reduced cycle‐skipping and recovered a seasonal trend that corresponded well with the timing of active‐layer freeze and thaw. This improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Florida, Gainesville, FL (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, null
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1374826
Alternate Identifier(s):
OSTI ID: 1389659
Report Number(s):
SAND2017-8386J
Journal ID: ISSN 0094-8276; 656018
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 44; Journal Issue: 9; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

James, S. R., Knox, H. A., Abbott, R. E., and Screaton, E. J. Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost. United States: N. p., 2017. Web. doi:10.1002/2016GL072468.
James, S. R., Knox, H. A., Abbott, R. E., & Screaton, E. J. Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost. United States. https://doi.org/10.1002/2016GL072468
James, S. R., Knox, H. A., Abbott, R. E., and Screaton, E. J. Thu . "Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost". United States. https://doi.org/10.1002/2016GL072468. https://www.osti.gov/servlets/purl/1374826.
@article{osti_1374826,
title = {Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost},
author = {James, S. R. and Knox, H. A. and Abbott, R. E. and Screaton, E. J.},
abstractNote = {Abstract Cross correlations of seismic noise can potentially record large changes in subsurface velocity due to permafrost dynamics and be valuable for long‐term Arctic monitoring. We applied seismic interferometry, using moving window cross‐spectral analysis (MWCS), to 2 years of ambient noise data recorded in central Alaska to investigate whether seismic noise could be used to quantify relative velocity changes due to seasonal active‐layer dynamics. The large velocity changes (>75%) between frozen and thawed soil caused prevalent cycle‐skipping which made the method unusable in this setting. We developed an improved MWCS procedure which uses a moving reference to measure daily velocity variations that are then accumulated to recover the full seasonal change. This approach reduced cycle‐skipping and recovered a seasonal trend that corresponded well with the timing of active‐layer freeze and thaw. This improvement opens the possibility of measuring large velocity changes by using MWCS and permafrost monitoring by using ambient noise.},
doi = {10.1002/2016GL072468},
journal = {Geophysical Research Letters},
number = 9,
volume = 44,
place = {United States},
year = {Thu Apr 13 00:00:00 EDT 2017},
month = {Thu Apr 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments
journal, June 2009

  • Hadziioannou, Céline; Larose, Eric; Coutant, Olivier
  • The Journal of the Acoustical Society of America, Vol. 125, Issue 6
  • DOI: 10.1121/1.3125345

A comparison of methods to estimate seismic phase delays: numerical examples for coda wave interferometry
journal, April 2015

  • Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di
  • Geophysical Journal International, Vol. 202, Issue 1
  • DOI: 10.1093/gji/ggv138

Advances in geophysical methods for permafrost investigations
journal, January 2008

  • Kneisel, Christof; Hauck, Christian; Fortier, Richard
  • Permafrost and Periglacial Processes, Vol. 19, Issue 2
  • DOI: 10.1002/ppp.616

Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise: CORRELATIONS OF THE SEISMIC NOISE
journal, April 2004

  • Shapiro, N. M.; Campillo, M.
  • Geophysical Research Letters, Vol. 31, Issue 7
  • DOI: 10.1029/2004GL019491

Seismic surface waves in a suburban environment: Active and passive interferometric methods
journal, February 2008

  • Halliday, David; Curtis, Andrew; Kragh, Ed
  • The Leading Edge, Vol. 27, Issue 2
  • DOI: 10.1190/1.2840369

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Monitoring a temporal change of seismic velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (Indonesia)
journal, April 1995

  • Ratdomopurbo, Antonius; Poupinet, Georges
  • Geophysical Research Letters, Vol. 22, Issue 7
  • DOI: 10.1029/95GL00302

Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations
journal, September 2008


Monitoring of phreatic eruptions using Interferometry on Retrieved Cross-Correlation Function from Ambient Seismic Noise: Results from Mt. Ruapehu, New Zealand
journal, March 2010


Passive seismic monitoring of carbon dioxide storage at Weyburn
journal, February 2010

  • Verdon, James P.; Kendall, J-Michael; White, Don J.
  • The Leading Edge, Vol. 29, Issue 2
  • DOI: 10.1190/1.3304825

Monitoring volcanoes using seismic noise correlations
journal, September 2011


MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise
journal, May 2014

  • Lecocq, T.; Caudron, C.; Brenguier, F.
  • Seismological Research Letters, Vol. 85, Issue 3
  • DOI: 10.1785/0220130073

Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity
journal, March 2002


Active Layer Thaw Rate at a Boreal Forest Site in Central Alaska, U.S.A.
journal, February 1995

  • Hinkel, Kenneth M.; Nicholas, James R. J.
  • Arctic and Alpine Research, Vol. 27, Issue 1
  • DOI: 10.2307/1552069

CLIMATE CHANGE: Permafrost and the Global Carbon Budget
journal, June 2006


Time-lapse travel time change of multiply scattered acoustic waves
journal, September 2005

  • Pacheco, Carlos; Snieder, Roel
  • The Journal of the Acoustical Society of America, Vol. 118, Issue 3
  • DOI: 10.1121/1.2000827

Long-Range Correlations in the Diffuse Seismic Coda
journal, January 2003


Hydrostratigraphy characterization of the Floridan aquifer system using ambient seismic noise
journal, February 2017

  • James, Stephanie R.; Screaton, Elizabeth J.; Russo, Raymond M.
  • Geophysical Journal International, Vol. 209, Issue 2
  • DOI: 10.1093/gji/ggx064

Ambient seismic noise monitoring of a clay landslide: Toward failure prediction: SEISMIC NOISE MONITORING OF A LANDSLIDE
journal, March 2012

  • Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia
  • Journal of Geophysical Research: Earth Surface, Vol. 117, Issue F1
  • DOI: 10.1029/2011JF002159

Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska
journal, July 2009

  • Osterkamp, T. E.; Jorgenson, M. T.; Schuur, E. A. G.
  • Permafrost and Periglacial Processes, Vol. 20, Issue 3
  • DOI: 10.1002/ppp.656

Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007
journal, July 2009

  • Duputel, Zacharie; Ferrazzini, Valérie; Brenguier, Florent
  • Journal of Volcanology and Geothermal Research, Vol. 184, Issue 1-2
  • DOI: 10.1016/j.jvolgeores.2008.11.024

Characterization of shallow geology by high-frequency seismic noise tomography
journal, January 2009


The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest
journal, June 2016

  • Fisher, James P.; Estop-Aragonés, Cristian; Thierry, Aaron
  • Global Change Biology, Vol. 22, Issue 9
  • DOI: 10.1111/gcb.13248

Monitoring changes in velocity and Q using non-physical arrivals in seismic interferometry
journal, November 2012

  • Draganov, D.; Ghose, R.; Heller, K.
  • Geophysical Journal International, Vol. 192, Issue 2
  • DOI: 10.1093/gji/ggs037

Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise
journal, January 2014

  • Gassenmeier, M.; Sens-Schönfelder, C.; Delatre, M.
  • Geophysical Journal International, Vol. 200, Issue 1
  • DOI: 10.1093/gji/ggu413

Reconstruction of Rayleigh–Lamb dispersion spectrum based on noise obtained from an air-jet forcing
journal, December 2007

  • Larose, Eric; Roux, Philippe; Campillo, Michel
  • The Journal of the Acoustical Society of America, Vol. 122, Issue 6
  • DOI: 10.1121/1.2799913

Fault zone monitoring with passive image interferometry
journal, March 2007


High-Resolution Surface-Wave Tomography from Ambient Seismic Noise
journal, March 2005


Towards forecasting volcanic eruptions using seismic noise
journal, January 2008

  • Brenguier, Florent; Shapiro, Nikolai M.; Campillo, Michel
  • Nature Geoscience, Vol. 1, Issue 2
  • DOI: 10.1038/ngeo104

Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia
journal, January 2006

  • Sens-Schönfelder, C.; Wegler, U.
  • Geophysical Research Letters, Vol. 33, Issue 21
  • DOI: 10.1029/2006GL027797

Time-lapse monitoring of rock properties with coda wave interferometry: TIME-LAPSE MONITORING OF ROCK PROPERTIES
journal, March 2006

  • Grêt, Alexandre; Snieder, Roel; Scales, John
  • Journal of Geophysical Research: Solid Earth, Vol. 111, Issue B3
  • DOI: 10.1029/2004JB003354

Temperature dependence of diffuse field phase
journal, March 2000


The effect of the extent of freezing on seismic velocities in unconsolidated permafrost
journal, June 1986

  • Zimmerman, Robert W.; King, Michael S.
  • GEOPHYSICS, Vol. 51, Issue 6
  • DOI: 10.1190/1.1442181

Fault zone monitoring with passive image interferometry
journal, March 2007


Works referencing / citing this record:

Insights Into Permafrost and Seasonal Active‐Layer Dynamics From Ambient Seismic Noise Monitoring
journal, July 2019

  • James, S. R.; Knox, H. A.; Abbott, R. E.
  • Journal of Geophysical Research: Earth Surface, Vol. 124, Issue 7
  • DOI: 10.1029/2019jf005051

Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard
journal, January 2019


Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland’s Northern Volcanic Zone
journal, November 2019


Shear wave velocity changes induced by earthquakes and rainfall at the Rotokawa and Ngatamariki geothermal fields, Taupō Volcanic Zone, New Zealand
journal, December 2019

  • Civilini, F.; Savage, M. K.; Townend, J.
  • Geophysical Journal International, Vol. 221, Issue 1
  • DOI: 10.1093/gji/ggz547

Influence of Seasonal Frozen Soil on Near‐Surface Shear Wave Velocity in Eastern Hokkaido, Japan
journal, August 2019

  • Miao, Y.; Shi, Y.; Zhuang, H. Y.
  • Geophysical Research Letters, Vol. 46, Issue 16
  • DOI: 10.1029/2019gl082282

Tracking Groundwater Levels using the Ambient Seismic Field
text, January 2018


Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland's Northern Volcanic Zone.
text, January 2019

  • Donaldson, Clare; Winder, Thomas; Caudron, C.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.44925

Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland's Northern Volcanic Zone.
text, January 2019

  • Donaldson, C.; Winder, T.; Caudron, C.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47555

Shear wave velocity changes induced by earthquakes and rainfall at the Rotokawa and Ngatamariki geothermal fields, Taup o Volcanic Zone, New Zealand
text, January 2021

  • Civilini, F.; Savage, Martha; Townend, John
  • Open Access Victoria University of Wellington | Te Herenga Waka
  • DOI: 10.25455/wgtn.16766860.v1

Shear wave velocity changes induced by earthquakes and rainfall at the Rotokawa and Ngatamariki geothermal fields, Taup o Volcanic Zone, New Zealand
text, January 2021

  • Civilini, F.; Savage, Martha; Townend, John
  • Open Access Victoria University of Wellington | Te Herenga Waka
  • DOI: 10.25455/wgtn.16766860