skip to main content


This content will become publicly available on August 4, 2018

Title: A Monte Carlo model for 3D grain evolution during welding

Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.
ORCiD logo [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0965-0393; 655911
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Modelling and Simulation in Materials Science and Engineering
Additional Journal Information:
Journal Volume: 25; Journal Issue: 6; Journal ID: ISSN 0965-0393
IOP Publishing
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE; 97 MATHEMATICS AND COMPUTING; welding; grain growth; Potts Monte Carlo; solidification
OSTI Identifier: