DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mesoscale Effective Property Simulations Incorporating Conductive Binder

Abstract

Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure, a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulationmore » challenge.« less

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Vehicle Technologies Office
OSTI Identifier:
1374748
Report Number(s):
SAND-2017-7904J
Journal ID: ISSN 0013-4651; 655696
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 11; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; effective properties; lithium-ion battery; mechanics; mesoscale; modeling; NMC cathode; simulation; stress; transport

Citation Formats

Trembacki, Bradley L., Noble, David R., Brunini, Victor E., Ferraro, Mark E., and Roberts, Scott A. Mesoscale Effective Property Simulations Incorporating Conductive Binder. United States: N. p., 2017. Web. doi:10.1149/2.0601711jes.
Trembacki, Bradley L., Noble, David R., Brunini, Victor E., Ferraro, Mark E., & Roberts, Scott A. Mesoscale Effective Property Simulations Incorporating Conductive Binder. United States. https://doi.org/10.1149/2.0601711jes
Trembacki, Bradley L., Noble, David R., Brunini, Victor E., Ferraro, Mark E., and Roberts, Scott A. Wed . "Mesoscale Effective Property Simulations Incorporating Conductive Binder". United States. https://doi.org/10.1149/2.0601711jes. https://www.osti.gov/servlets/purl/1374748.
@article{osti_1374748,
title = {Mesoscale Effective Property Simulations Incorporating Conductive Binder},
author = {Trembacki, Bradley L. and Noble, David R. and Brunini, Victor E. and Ferraro, Mark E. and Roberts, Scott A.},
abstractNote = {Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure, a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.},
doi = {10.1149/2.0601711jes},
journal = {Journal of the Electrochemical Society},
number = 11,
volume = 164,
place = {United States},
year = {Wed Jul 26 00:00:00 EDT 2017},
month = {Wed Jul 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries
journal, August 2006

  • Chen, Libao; Xie, Xiaohua; Xie, Jingying
  • Journal of Applied Electrochemistry, Vol. 36, Issue 10
  • DOI: 10.1007/s10800-006-9191-2

Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes
journal, January 2016

  • Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.1191608jes

Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
journal, August 2016

  • Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4035198

A Microstructural Resolved Model for the Stress Analysis of Lithium-Ion Batteries
journal, January 2014

  • Wu, Wei; Xiao, Xinran; Wang, Miao
  • Journal of The Electrochemical Society, Vol. 161, Issue 5
  • DOI: 10.1149/2.082405jes

Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review
journal, August 2016

  • Xu, Rong; Zhao, Kejie
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4035310

Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
journal, December 2016


A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes
journal, January 2014

  • Roberts, Scott A.; Brunini, Victor E.; Long, Kevin N.
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0081411jes

Investigation of binder distribution in graphite anodes for lithium-ion batteries
journal, February 2017


Progressive mechanical indentation of large-format Li-ion cells
journal, February 2017


Comparing Macroscale and Microscale Simulations of Porous Battery Electrodes
journal, January 2017

  • Higa, Kenneth; Wu, Shao-Ling; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0501711jes

Three-Phase Multiscale Modeling of a LiCoO 2 Cathode: Combining the Advantages of FIB-SEM Imaging and X-Ray Tomography
journal, November 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401612

A conformal decomposition finite element method for modeling stationary fluid interface problems
journal, January 2009

  • Noble, David R.; Newren, Elijah P.; Lechman, Jeremy B.
  • International Journal for Numerical Methods in Fluids
  • DOI: 10.1002/fld.2095

Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

Investigation of film solidification and binder migration during drying of Li-Ion battery anodes
journal, June 2016


Thermal-Electrochemical Modeling of Battery Systems
journal, January 2000

  • Gu, W. B.; Wang, C. Y.
  • Journal of The Electrochemical Society, Vol. 147, Issue 8
  • DOI: 10.1149/1.1393625

A Coupled Finite Volume Method for Particle Scale Electrochemical Modeling of Lithium-Ion Batteries
conference, April 2014

  • Trembacki, Bradley L.; Vadakkepatt, Ajay; Mathur, Sanjay R.
  • ASME 2013 International Mechanical Engineering Congress and Exposition, Volume 6A: Energy
  • DOI: 10.1115/IMECE2013-65774

Three Dimensional Simulation of Galvanostatic Discharge of LiCoO 2 Cathode Based on X-ray Nano-CT Images
journal, January 2012

  • Yan, Bo; Lim, Cheolwoong; Yin, Leilei
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.024210jes

Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
journal, October 2013


Evolution of the 3D Microstructure of a Si-Based Electrode for Li-Ion Batteries Investigated by FIB/SEM Tomography
journal, January 2016

  • Etiemble, Aurélien; Tranchot, Alix; Douillard, Thierry
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0421608jes

Thermal conductivity of carbon black
journal, September 1979

  • Khizhnyak, P. E.; Chechetkin, A. V.; Glybin, A. P.
  • Journal of Engineering Physics, Vol. 37, Issue 3
  • DOI: 10.1007/BF00861683

Study on microstructures of electrodes in lithium-ion batteries using variational multi-scale enrichment
journal, May 2016


X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
journal, March 2013

  • Ebner, Martin; Geldmacher, Felix; Marone, Federica
  • Advanced Energy Materials, Vol. 3, Issue 7
  • DOI: 10.1002/aenm.201200932

Communication—Technique for Visualization and Quantification of Lithium-Ion Battery Separator Microstructure
journal, January 2016

  • Lagadec, Marie Francine; Ebner, Martin; Zahn, Raphael
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0811606jes

Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study
journal, November 2015


Vegard’s law
journal, March 1991


Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode
journal, January 2011

  • Kehrwald, Dirk; Shearing, Paul R.; Brandon, Nigel P.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.079112jes

Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials
journal, January 2012

  • Kam, Kinson C.; Mehta, Apurva; Heron, John T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.060208jes

Batteries: Imaging degradation
journal, November 2016


The use of contrast enhancement techniques in X-ray imaging of lithium–ion battery electrodes
journal, November 2016

  • Taiwo, Oluwadamilola O.; Finegan, Donal P.; Gelb, Jeff
  • Chemical Engineering Science, Vol. 154
  • DOI: 10.1016/j.ces.2016.04.023

A conformal decomposition finite element method for arbitrary discontinuities on moving interfaces: CDFEM FOR ARBITRARY DISCONTINUITIES ON MOVING INTERFACES
journal, June 2014

  • Kramer, Richard M. J.; Noble, David R.
  • International Journal for Numerical Methods in Engineering, Vol. 100, Issue 2
  • DOI: 10.1002/nme.4717

Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2
journal, January 1992

  • Reimers, Jan N.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 139, Issue 8, p. 2091-2097
  • DOI: 10.1149/1.2221184

Conductivity Degradation of Polyvinylidene Fluoride Composite Binder during Cycling: Measurements and Simulations for Lithium-Ion Batteries
journal, January 2016

  • Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0341609jes

Enhanced Imaging of Lithium Ion Battery Electrode Materials
journal, September 2016

  • Biton, Moshiel; Yufit, Vladimir; Tariq, Farid
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0061701jes

Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation
journal, January 2012

  • Less, G. B.; Seo, J. H.; Han, S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.096205jes

Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions
journal, April 2017


Quantifying tortuosity in porous Li-ion battery materials
journal, March 2009


Structural and thermal properties of PVDF/PVA blends
journal, March 2009

  • Krishna Bama, G.; Indra Devi, P.; Ramachandran, K.
  • Journal of Materials Science, Vol. 44, Issue 5
  • DOI: 10.1007/s10853-009-3271-8

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

The thermal conductivity of dimethyl carbonate in the liquid phase
journal, June 2004


Scaling Relations for Intercalation Induced Damage in Electrodes
journal, June 2016


A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries
journal, April 2017


Critical Role of Polymeric Binders on the Electronic Transport Properties of Composites Electrode
journal, January 2006

  • Guy, D.; Lestriez, B.; Bouchet, R.
  • Journal of The Electrochemical Society, Vol. 153, Issue 4
  • DOI: 10.1149/1.2168049

Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells
journal, January 1996

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836921

Stress evolution and capacity fade in constrained lithium-ion pouch cells
journal, January 2014


A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries
journal, September 2016


Determination of the size of the representative volume element for random composites: statistical and numerical approach
journal, June 2003


Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode
journal, January 2008

  • Liu, G.; Zheng, H.; Kim, S.
  • Journal of The Electrochemical Society, Vol. 155, Issue 12
  • DOI: 10.1149/1.2976031

Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes
journal, January 2013


Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles
journal, January 2008

  • Zhang, Xiangchun; Sastry, Ann Marie; Shyy, Wei
  • Journal of The Electrochemical Society, Vol. 155, Issue 7
  • DOI: 10.1149/1.2926617

A Combination of X-Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO 2 Li-Ion Battery Cathodes
journal, January 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 4, Issue 8
  • DOI: 10.1002/aenm.201301617

Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO 4
journal, August 2016


Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models
journal, March 2012


A Computational Model of the Mechanical Behavior within Reconstructed LixCoO2 Li-ion Battery Cathode Particles
journal, June 2014


Safety focused modeling of lithium-ion batteries: A review
journal, February 2016


Overcharge Performance of 3,7-Bis(trifluoromethyl)- N -ethylphenothiazine at High Concentration in Lithium-Ion Batteries
journal, October 2015

  • Kaur, Aman Preet; Elliott, Corrine F.; Ergun, Selin
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0951514jes

Degradation effects on the surface of commercial LiNi 0.5 Co 0.2 Mn 0.3 O 2 electrodes
journal, December 2016


A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells
journal, January 2014


Role of Plastic Deformation of Binder on Stress Evolution during Charging and Discharging in Lithium-Ion Battery Negative Electrodes
journal, January 2013

  • Rahani, Ehsan Kabiri; Shenoy, Vivek B.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.046308jes

Three-Phase 3D Reconstruction of a LiCoO 2 Cathode via FIB-SEM Tomography
journal, January 2016

  • Liu, Zhao; Chen-Wiegart, Yu-chen K.; Wang, Jun
  • Microscopy and Microanalysis, Vol. 22, Issue 1
  • DOI: 10.1017/S1431927615015640

Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study
journal, January 2012

  • Zhu, M.; Park, J.; Sastry, A. M.
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.045204jes

Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes
journal, June 2015


Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography
journal, March 2016


Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures
journal, February 2016


The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries
journal, December 2015


Thermal Conductivity of A x BO 2 -type Layered Oxides Na 0.77 MnO 2 and LiCoO 2
journal, February 2002

  • Takahata, Kazumi; Terasaki, Ichiro
  • Japanese Journal of Applied Physics, Vol. 41, Issue Part 1, No. 2A
  • DOI: 10.1143/JJAP.41.763

Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study
journal, December 2015

  • Takahashi, Kenji; Higa, Kenneth; Mair, Sunil
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0271603jes

Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries
journal, February 2017


Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities
journal, October 2016


Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode
journal, January 2012

  • Hutzenlaub, Tobias; Thiele, Simon; Zengerle, Roland
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 3
  • DOI: 10.1149/2.002203esl

Causes of binder damage in porous battery electrodes and strategies to prevent it
journal, May 2017


TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO[sub 2] Cathodes for Rechargeable Lithium Batteries
journal, January 1999

  • Wang, Haifeng
  • Journal of The Electrochemical Society, Vol. 146, Issue 2
  • DOI: 10.1149/1.1391631

Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging
journal, February 2017


Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes
journal, December 2014

  • Ebner, Martin; Wood, Vanessa
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0111502jes

Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
journal, January 2017

  • Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak
  • Journal of Applied Electrochemistry, Vol. 47, Issue 3
  • DOI: 10.1007/s10800-016-1037-y

Time-dependent deformation behavior of polyvinylidene fluoride binder: Implications on the mechanics of composite electrodes
journal, November 2016


Safer Batteries through Coupled Multiscale Modeling
journal, January 2015


Works referencing / citing this record:

Mechanical, Electrical, and Ionic Behavior of Lithium‐Ion Battery Electrodes via Discrete Element Method Simulations
journal, April 2019

  • Sangrós Giménez, Clara; Schilde, Carsten; Froböse, Linus
  • Energy Technology, Vol. 8, Issue 2
  • DOI: 10.1002/ente.201900180

Progress in 3D electrode microstructure modelling for fuel cells and batteries: transport and electrochemical performance
journal, July 2019


Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes
journal, January 2019

  • Trembacki, Bradley; Duoss, Eric; Oxberry, Geoffrey
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0031906jes

Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures
journal, September 2019

  • Trembacki, Bradley L.; Vadakkepatt, Ajay; Roberts, Scott A.
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/2.0072001jes

A Multi-Physics Battery Model with Particle Scale Resolution of Porosity Evolution Driven by Intercalation Strain and Electrolyte Flow
journal, January 2018

  • Wang, Z.; Garikipati, K.
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0141811jes

Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes
journal, January 2018

  • Trembacki, Bradley L.; Mistry, Aashutosh N.; Noble, David R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0981813jes