skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications

Abstract

Here, iodine-doped CdTe and Cd1-xMgxTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 1018 cm-3 for CdTe and 3 x 1017 cm-3 for Cd0.65Mg0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTe samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd0.65Mg0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 1018 cm-3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 1016 cm-3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3];  [2];  [1]
  1. Texas State Univ., San Marcos, TX (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. EAG Laboratories, Sunnyvale, CA (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1374126
Report Number(s):
NREL/JA-5K00-68892
Journal ID: ISSN 0361-5235
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Electronic Materials
Additional Journal Information:
Journal Volume: 46; Journal Issue: 9; Journal ID: ISSN 0361-5235
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CdTe; Cd1-xMgxTe; doping; iodine; MBE; solar cell

Citation Formats

Ogedengbe, O. S., Swartz, C. H., Jayathilaka, P. A. R. D., Petersen, J. E., Sohal, S., LeBlanc, E. G., Edirisooriya, M., Zaunbrecher, K. N., Wang, A., Barnes, T. M., and Myers, T. H. Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications. United States: N. p., 2017. Web. doi:10.1007/s11664-017-5588-4.
Ogedengbe, O. S., Swartz, C. H., Jayathilaka, P. A. R. D., Petersen, J. E., Sohal, S., LeBlanc, E. G., Edirisooriya, M., Zaunbrecher, K. N., Wang, A., Barnes, T. M., & Myers, T. H. Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications. United States. doi:10.1007/s11664-017-5588-4.
Ogedengbe, O. S., Swartz, C. H., Jayathilaka, P. A. R. D., Petersen, J. E., Sohal, S., LeBlanc, E. G., Edirisooriya, M., Zaunbrecher, K. N., Wang, A., Barnes, T. M., and Myers, T. H. Tue . "Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications". United States. doi:10.1007/s11664-017-5588-4. https://www.osti.gov/servlets/purl/1374126.
@article{osti_1374126,
title = {Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications},
author = {Ogedengbe, O. S. and Swartz, C. H. and Jayathilaka, P. A. R. D. and Petersen, J. E. and Sohal, S. and LeBlanc, E. G. and Edirisooriya, M. and Zaunbrecher, K. N. and Wang, A. and Barnes, T. M. and Myers, T. H.},
abstractNote = {Here, iodine-doped CdTe and Cd1-xMgxTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 1018 cm-3 for CdTe and 3 x 1017 cm-3 for Cd0.65Mg0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTe samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd0.65Mg0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 1018 cm-3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 1016 cm-3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.},
doi = {10.1007/s11664-017-5588-4},
journal = {Journal of Electronic Materials},
number = 9,
volume = 46,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Molecular beam epitaxy of iodine-doped CdTe and (CdMg) Te
journal, August 1994


Donor doping of (211) CdTe epilayers and CdTe/CdZnTe piezoelectric heterostructures by molecular beam epitaxy
journal, October 1993

  • Bassani, F.; Tatarenko, S.; Kheng, K.
  • Applied Physics Letters, Vol. 63, Issue 15, p. 2106-2108
  • DOI: 10.1063/1.110554

Iodine doping in mercury cadmium telluride (Hg 1− x Cd x Te) grown by direct alloy growth using metalorganic chemical vapor deposition
journal, August 1993

  • Murakami, S.; Okamoto, T.; Maruyama, K.
  • Applied Physics Letters, Vol. 63, Issue 7
  • DOI: 10.1063/1.109895

Growth of high mobility n ‐type CdTe by photoassisted molecular beam epitaxy
journal, October 1986

  • Bicknell, R. N.; Giles, N. C.; Schetzina, J. F.
  • Applied Physics Letters, Vol. 49, Issue 17
  • DOI: 10.1063/1.97432

Halogen doping of II–VI semiconductors during molecular beam epitaxy
journal, April 1994


Factors influencing photoluminescence and photocarrier lifetime in CdSeTe/CdMgTe double heterostructures
journal, October 2016

  • Swartz, C. H.; Zaunbrecher, K. N.; Sohal, S.
  • Journal of Applied Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.4966574

Electrical and Optical Properties of n-Type Indium-Doped CdTe/Mg0.46Cd0.54Te Double Heterostructures
journal, March 2016


Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%
journal, May 2016


Optical properties of undoped and iodine-doped CdTe
journal, May 1995

  • Giles, N. C.; Lee, Jaesun; Myers, T. H.
  • Journal of Electronic Materials, Vol. 24, Issue 5
  • DOI: 10.1007/BF02657980

Iodine doping of CdTe and CdZnTe layers grown by molecular beam epitaxy
journal, August 1995

  • Brun‐Le‐Cunff, D.; Baron, T.; Daudin, B.
  • Applied Physics Letters, Vol. 67, Issue 7
  • DOI: 10.1063/1.114710

Radiative and interfacial recombination in CdTe heterostructures
journal, December 2014

  • Swartz, C. H.; Edirisooriya, M.; LeBlanc, E. G.
  • Applied Physics Letters, Vol. 105, Issue 22
  • DOI: 10.1063/1.4902926

Growth of fully doped Hg1−xCdxTe heterostructures using a novel iodine doping source to achieve improved device performance at elevated temperatures
journal, August 1996

  • Maxey, C. D.; Jones, C. L.; Metcalfe, N. E.
  • Journal of Electronic Materials, Vol. 25, Issue 8
  • DOI: 10.1007/BF02655020

Photon-Radiative Recombination of Electrons and Holes in Germanium
journal, June 1954


CdTe solar cells with open-circuit voltage breaking the 1 V barrier
journal, February 2016


Electrodeposited CdTe—optical properties
journal, June 1997

  • Rakhshani, A. E.
  • Journal of Applied Physics, Vol. 81, Issue 12
  • DOI: 10.1063/1.365402

Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
journal, August 2016

  • Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.
  • Applied Physics Letters, Vol. 109, Issue 9
  • DOI: 10.1063/1.4961989

Monocrystalline CdTe/MgCdTe double-heterostructure solar cells with a ZnTe hole-contact and passivation layer
conference, June 2016

  • Becker, Jacob J.; Campbell, Calli M.; Zhao, Yuan
  • 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2016.7749850

Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy
journal, December 2014

  • Zhao, Xin-Hao; DiNezza, Michael J.; Liu, Shi
  • Applied Physics Letters, Vol. 105, Issue 25
  • DOI: 10.1063/1.4904993

Metal-organic vapor-phase epitaxial growth of HgCdTe device heterostructures on three-inch-diameter substrates
journal, July 2003

  • Maxey, C. D.; Camplin, J. P.; Guilfoy, I. T.
  • Journal of Electronic Materials, Vol. 32, Issue 7
  • DOI: 10.1007/s11664-003-0048-8

The effect of impurities on the doping and VOC of CdTe/CdS thin film solar cells
journal, February 2009