skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal nano-grids for transparent conduction in solar cells

Abstract

A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGs with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiencymore » absorber technologies.« less

Authors:
 [1]
  1. Univ. of Florida, Gainesville, FL (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1373684
Report Number(s):
NREL/JA-5K00-68990
Journal ID: ISSN 0927-0248
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Solar Energy Materials and Solar Cells
Additional Journal Information:
Journal Volume: 169; Journal Issue: C; Journal ID: ISSN 0927-0248
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; transparent conduction; metal grid; metal nano-grid; transparent conducting oxide; series resistance; transmittance

Citation Formats

Muzzillo, Christopher P. Metal nano-grids for transparent conduction in solar cells. United States: N. p., 2017. Web. https://doi.org/10.1016/j.solmat.2017.04.048.
Muzzillo, Christopher P. Metal nano-grids for transparent conduction in solar cells. United States. https://doi.org/10.1016/j.solmat.2017.04.048
Muzzillo, Christopher P. Thu . "Metal nano-grids for transparent conduction in solar cells". United States. https://doi.org/10.1016/j.solmat.2017.04.048. https://www.osti.gov/servlets/purl/1373684.
@article{osti_1373684,
title = {Metal nano-grids for transparent conduction in solar cells},
author = {Muzzillo, Christopher P.},
abstractNote = {A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGs with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.},
doi = {10.1016/j.solmat.2017.04.048},
journal = {Solar Energy Materials and Solar Cells},
number = C,
volume = 169,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Metal Nanowire Networks: The Next Generation of Transparent Conductors
journal, September 2014

  • Ye, Shengrong; Rathmell, Aaron R.; Chen, Zuofeng
  • Advanced Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adma.201402710

A mechanical assessment of flexible optoelectronic devices
journal, August 2001


Thermal degradation of indium‐tin‐oxide/ p ‐silicon solar cells
journal, January 1980

  • Goodnick, S. M.; Wager, J. F.; Wilmsen, C. W.
  • Journal of Applied Physics, Vol. 51, Issue 1
  • DOI: 10.1063/1.327356

Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes
journal, May 2005

  • Kim, Han-Ki; Kim, D. -G.; Lee, K. -S.
  • Applied Physics Letters, Vol. 86, Issue 18
  • DOI: 10.1063/1.1923182

Transparent conducting oxides for electrode applications in light emitting and absorbing devices
journal, November 2010


Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides
journal, March 2014


Failure of silver nanowire transparent electrodes under current flow
journal, May 2013

  • Khaligh, Hadi Hosseinzadeh; Goldthorpe, Irene A.
  • Nanoscale Research Letters, Vol. 8, Issue 1
  • DOI: 10.1186/1556-276X-8-235

Corrosion at the Nanoscale:  The Case of Silver Nanowires and Nanoparticles
journal, November 2005

  • Elechiguerra, Jose Luis; Larios-Lopez, Leticia; Liu, Cui
  • Chemistry of Materials, Vol. 17, Issue 24
  • DOI: 10.1021/cm051532n

Size-dependent melting point of noble metals
journal, September 2003


The effect of light and humidity on the stability of silver nanowire transparent electrodes
journal, January 2015

  • Jiu, Jinting; Wang, Jun; Sugahara, Tohru
  • RSC Advances, Vol. 5, Issue 35
  • DOI: 10.1039/C5RA02722E

Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer
journal, January 2016

  • Kwan, Yue Chau Garen; Le, Quang Luan; Huan, Cheng Hon Alfred
  • Solar Energy Materials and Solar Cells, Vol. 144
  • DOI: 10.1016/j.solmat.2015.08.005

Stability of silver nanowire based electrodes under environmental and electrical stresses
journal, January 2015

  • Mayousse, Céline; Celle, Caroline; Fraczkiewicz, Alexandra
  • Nanoscale, Vol. 7, Issue 5
  • DOI: 10.1039/C4NR06783E

Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements
journal, October 2000


Comparing the Fundamental Physics and Device Performance of Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting Oxides
journal, January 2012

  • Barnes, Teresa M.; Reese, Matthew O.; Bergeson, Jeremy D.
  • Advanced Energy Materials, Vol. 2, Issue 3
  • DOI: 10.1002/aenm.201100608

Double screen printed metallization of crystalline silicon solar cells as low as 30μm metal line width for mass production
journal, May 2012


Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices
journal, August 2010

  • Catrysse, Peter B.; Fan, Shanhui
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl1011239

Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers
journal, January 2015

  • Hubarevich, Aliaksandr; Marus, Mikita; Fan, Weijun
  • Optics Express, Vol. 23, Issue 14
  • DOI: 10.1364/OE.23.017860

A broadband plasmonic enhanced transparent conductor
journal, January 2014


Transparent Conducting Silver Nanowire Networks
journal, May 2012

  • van de Groep, Jorik; Spinelli, Pierpaolo; Polman, Albert
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl301045a

Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode
journal, October 2013


A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance
journal, April 2011


A transparent electrode based on a metal nanotrough network
journal, May 2013

  • Wu, Hui; Kong, Desheng; Ruan, Zhichao
  • Nature Nanotechnology, Vol. 8, Issue 6
  • DOI: 10.1038/nnano.2013.84

Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes
journal, March 2014

  • Gao, Tongchuan; Wang, Baomin; Ding, Bo
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl5003075

Large-area soft-imprinted nanowire networks as light trapping transparent conductors
journal, June 2015

  • van de Groep, Jorik; Gupta, Dhritiman; Verschuuren, Marc A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11414

Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels
journal, November 2015

  • Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16838

Fabrication of Oxidation-Resistant Metal Wire Network-Based Transparent Electrodes by a Spray-Roll Coating Process
journal, December 2015

  • Kiruthika, S.; Gupta, Ritu; Anand, Aman
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 49
  • DOI: 10.1021/acsami.5b08171

High-Durable AgNi Nanomesh Film for a Transparent Conducting Electrode
journal, May 2014


Identification and design principles of low hole effective mass p-type transparent conducting oxides
journal, August 2013

  • Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3292

Metal–Insulator–Semiconductor Nanowire Network Solar Cells
journal, May 2016


Random mesh-like Ag networks prepared via self-assembled Ag nanoparticles for ITO-free flexible organic solar cells
journal, October 2016


The distributed series resistance problem in solar cells
journal, August 1984


Theoretical analysis of the series resistance of a solar cell
journal, August 1967


The effect of the front contact sheet resistance on solar cell performance
journal, September 2009


Distributed series resistance effects in solar cells
journal, May 1982


Analytical model for the design principle of large-area solar cells
journal, February 2012


Analytical models for the series resistance of selective emitters in silicon solar cells including the effect of busbars: Analytical models for the series resistance of selective emitters in silicon solar cells
journal, August 2013

  • Mäckel, Helmut; Micard, Gabriel; Varner, Kenneth
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 2
  • DOI: 10.1002/pip.2403

On the collection of photocurrent in solar cells with a contact grid
journal, July 1999

  • Sachenko, A. V.; Gorban, A. P.
  • Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 2, Issue 2
  • DOI: 10.15407/spqeo2.02.042

Calculation of the resistance of the diffused top layer in a photovoltaic cell
journal, November 1986


Indium-Tin-Oxide transparent conducting coatings on silicon solar cells and their “figure of merit”
journal, January 1981


Sheet resistance component of series resistance in a solar cell as a function of grid geometry
journal, July 1977


Solution‐Grown Cadmium Sulfide Films for Photovoltaic Devices
journal, September 1992

  • Chu, T. L.; Chu, Shirley S.; Schultz, N.
  • Journal of The Electrochemical Society, Vol. 139, Issue 9
  • DOI: 10.1149/1.2221246

Chemical Bath Deposition of CdS Thin Films: Electrochemical In Situ Kinetic Studies
journal, October 1992

  • Doña, J. M.; Herrero, J.
  • Journal of The Electrochemical Society, Vol. 139, Issue 10
  • DOI: 10.1149/1.2068984

Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources
journal, September 2008


Effect of the cadmium ion source on the structural and optical properties of chemical bath deposited CdS thin films
journal, June 1999


Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness
journal, August 2007

  • Amin, Nowshad; Sopian, Kamaruzzaman; Konagai, Makoto
  • Solar Energy Materials and Solar Cells, Vol. 91, Issue 13
  • DOI: 10.1016/j.solmat.2007.04.006

Effects of junction parameters on Cu(In,Ga)Se2 solar cells
journal, February 2008


Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis
journal, September 2010

  • Matin, M. A.; Mannir Aliyu, M.; Quadery, Abrar H.
  • Solar Energy Materials and Solar Cells, Vol. 94, Issue 9
  • DOI: 10.1016/j.solmat.2010.02.042

New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22%
conference, June 2016

  • Kamada, Rui; Yagioka, Takeshi; Adachi, Shunsuke
  • 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2016.7749822

Alteration of Cu conductivity in the size effect regime
journal, January 2004

  • Rossnagel, S. M.; Kuan, T. S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 22, Issue 1
  • DOI: 10.1116/1.1642639

Series resistance and optimum grid design for a thin film solar cell of rectangular shape
journal, December 1984


Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells
journal, January 2014

  • Lim, Ju Won; Lee, Young Tack; Pandey, Rina
  • Optics Express, Vol. 22, Issue 22
  • DOI: 10.1364/OE.22.026891

Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells
journal, September 2012


Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes
journal, December 2015

  • Schneider, Julian; Rohner, Patrik; Thureja, Deepankur
  • Advanced Functional Materials, Vol. 26, Issue 6
  • DOI: 10.1002/adfm.201503705

Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation
journal, March 2015

  • Paeng, Dongwoo; Yoo, Jae-Hyuck; Yeo, Junyeob
  • Advanced Materials, Vol. 27, Issue 17
  • DOI: 10.1002/adma.201500098

Large-Area Fabrication of Periodic Arrays of Nanoholes in Metal Films and Their Application in Biosensing and Plasmonic-Enhanced Photovoltaics
journal, September 2010

  • Menezes, Jacson W.; Ferreira, Jacqueline; Santos, Marcos J. L.
  • Advanced Functional Materials, Vol. 20, Issue 22
  • DOI: 10.1002/adfm.201001262

Transparent conductor based on aluminum nanomesh
journal, October 2014


Fabrication of Large Area, High-Performance, Transparent Conducting Electrodes Using a Spontaneously Formed Crackle Network as Template
journal, May 2014

  • Rao, K. D. M.; Gupta, Ritu; Kulkarni, Giridhar U.
  • Advanced Materials Interfaces, Vol. 1, Issue 6
  • DOI: 10.1002/admi.201400090

Bio-inspired networks for optoelectronic applications
journal, November 2014

  • Han, Bing; Huang, Yuanlin; Li, Ruopeng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6674

Solar cell conducting grid structure
journal, June 1976


Optimization of tapered busses for solar cell contacts
journal, January 1979


Substrate effects on the transmittance of 1D metal grid transparent electrodes
journal, January 2014


FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes
journal, January 2014

  • Lee, Kilbock; Song, Seok Ho; Ahn, Jinho
  • Optics Express, Vol. 22, Issue 6
  • DOI: 10.1364/OE.22.006269

Towards understanding the difference of optoelectronic performance between micro- and nanoscale metallic layers
journal, January 2016

  • Marus, Mikita; Hubarevich, Aliaksandr; Wang, Hong
  • Optical Materials Express, Vol. 6, Issue 8
  • DOI: 10.1364/OME.6.002655

A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared
journal, October 2012

  • Guo Du, Qing; Sathiyamoorthy, Krishnan; Ping Zhang, Li
  • Applied Physics Letters, Vol. 101, Issue 18
  • DOI: 10.1063/1.4765341

Modulation of optical transmittance and conductivity by the period, linewidth and height of Au square mesh electrodes
journal, January 2015


Light absorption mechanism in organic solar cells with hexagonal lattice nanohole aluminum transparent electrodes
journal, July 2015


Optical properties of metallic films for vertical-cavity optoelectronic devices
journal, January 1998

  • Rakić, Aleksandar D.; Djurišić, Aleksandra B.; Elazar, Jovan M.
  • Applied Optics, Vol. 37, Issue 22, p. 5271-5283
  • DOI: 10.1364/AO.37.005271

Structure, refractive-index dispersion and the optical absorption edge of chemically deposited Zn x Cd (1-x) S thin films
journal, February 2002

  • Salem, A. M.
  • Applied Physics A: Materials Science & Processing, Vol. 74, Issue 2
  • DOI: 10.1007/s003390100877

Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films
journal, January 2010

  • Reilly, Thomas H.; Tenent, Robert C.; Barnes, Teresa M.
  • ACS Nano, Vol. 4, Issue 2
  • DOI: 10.1021/nn901734d

Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers
journal, January 2015

  • Marus, Mikita; Hubarevich, Aliaksandr; Wang, Hong
  • Optics Express, Vol. 23, Issue 20
  • DOI: 10.1364/OE.23.026794

Estimation of the volume resistivity of electrically conductive composites
journal, December 1997

  • Weber, Mark; Kamal, Musa R.
  • Polymer Composites, Vol. 18, Issue 6, p. 711-725
  • DOI: 10.1002/pc.10324

Evaluating conducting network based transparent electrodes from geometrical considerations
journal, January 2016

  • Kumar, Ankush; Kulkarni, G. U.
  • Journal of Applied Physics, Vol. 119, Issue 1
  • DOI: 10.1063/1.4939280

Morphology and electrical resistivity of metallic nanostructures
journal, March 2005


Electron mean free path model for rectangular nanowire, nanofilm and nanoparticle
journal, April 2014


Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films
journal, March 2001


Size-dependent resistivity of nanometric copper wires
journal, July 2006


Modeling and simulation of resistivity of nanometer scale copper
journal, July 2006


Influence of the electron mean free path on the resistivity of thin metal films
journal, October 2004


Thin film PV modules for low-concentrating systems
journal, July 2001


Front contact optimization for Cu(In,Ga)Se/sub 2/ (sub)modules
conference, January 1996

  • Kessler, J.; Wiedeman, S.; Russell, L.
  • Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996
  • DOI: 10.1109/PVSC.1996.564270

Past achievements and future challenges in the development of optically transparent electrodes
journal, November 2012


Transparent electrode requirements for thin film solar cell modules
journal, January 2011

  • Rowell, Michael W.; McGehee, Michael D.
  • Energy Environ. Sci., Vol. 4, Issue 1
  • DOI: 10.1039/C0EE00373E

New figure of merit for transparent conductors
journal, September 1976


Solution-Grown Silver Nanowire Ordered Arrays as Transparent Electrodes
journal, December 2015

  • Sciacca, Beniamino; van de Groep, Jorik; Polman, Albert
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201504045

Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing
journal, March 2013


Cu Mesh for Flexible Transparent Conductive Electrodes
journal, June 2015

  • Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10715

Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications
journal, August 2016


A re-evaluation of transparent conductor requirements for thin-film solar cells
journal, January 2016

  • Jacobs, Daniel A.; Catchpole, Kylie R.; Beck, Fiona J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 12
  • DOI: 10.1039/C6TA01670G

High-Efficiency Crystalline Silicon Solar Cells
journal, August 2007


Solar cell efficiency tables (version 48): Solar cell efficiency tables (version 48)
journal, June 2016

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 24, Issue 7
  • DOI: 10.1002/pip.2788

Simulation of hetero-junction silicon solar cells with AMPS-1D
journal, January 2010

  • Hernández-Como, Norberto; Morales-Acevedo, Arturo
  • Solar Energy Materials and Solar Cells, Vol. 94, Issue 1
  • DOI: 10.1016/j.solmat.2009.05.021

Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
journal, January 2014

  • Peter Seif, Johannes; Descoeudres, Antoine; Filipič, Miha
  • Journal of Applied Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.4861404

Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ∼27% efficiency
journal, February 2013


Analysis of lateral transport through the inversion layer in amorphous silicon/crystalline silicon heterojunction solar cells
journal, August 2013

  • Filipič, Miha; Holman, Zachary C.; Smole, Franc
  • Journal of Applied Physics, Vol. 114, Issue 7
  • DOI: 10.1063/1.4818709

Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell
journal, November 2014


Projections of GaAs solar-cell performance limits based on two-dimensional numerical simulation
journal, May 1989

  • DeMoulin, P. D.; Lundstrom, M. S.
  • IEEE Transactions on Electron Devices, Vol. 36, Issue 5
  • DOI: 10.1109/16.299671

Controlled formation of GaAs pn junctions during hydride vapor phase epitaxy of GaAs
journal, August 2012


Computational fluid dynamics-aided analysis of a hydride vapor phase epitaxy reactor
journal, January 2016


GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers
journal, January 2016


Simulating single-junction GaAs solar cells including photon recycling
journal, January 2006

  • Létay, G.; Hermle, M.; Bett, A. W.
  • Progress in Photovoltaics: Research and Applications, Vol. 14, Issue 8
  • DOI: 10.1002/pip.699

Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells
journal, January 2013

  • Abate, Antonio; Leijtens, Tomas; Pathak, Sandeep
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 7
  • DOI: 10.1039/c2cp44397j

Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO 2 compact layers
journal, May 2016


Bulk heterojunction perovskite–PCBM solar cells with high fill factor
journal, February 2016


Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency
journal, January 2015

  • Heo, Jin Hyuck; Han, Hye Ji; Kim, Dasom
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00120J

Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition
journal, December 2003


Improving the TiO 2 electron transport layer in perovskite solar cells using acetylacetonate-based additives
journal, January 2015

  • Wang, Hsin-Hua; Chen, Qi; Zhou, Huanping
  • Journal of Materials Chemistry A, Vol. 3, Issue 17
  • DOI: 10.1039/C4TA06394E

Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency
journal, January 2014

  • Wojciechowski, Konrad; Saliba, Michael; Leijtens, Tomas
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43707H

Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as electron transport layer
journal, December 2016


Interface engineering of highly efficient perovskite solar cells
journal, July 2014


A three-dimensional metal grid mesh as a practical alternative to ITO
journal, January 2016

  • Jang, Sungwoo; Jung, Woo-Bin; Kim, Choelgyu
  • Nanoscale, Vol. 8, Issue 29
  • DOI: 10.1039/C6NR03060B

Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells
journal, May 2010

  • Zou, Jingyu; Yip, Hin-Lap; Hau, Steven K.
  • Applied Physics Letters, Vol. 96, Issue 20
  • DOI: 10.1063/1.3394679

High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode
journal, January 2016

  • Du, Qing Guo; Yue, Weisheng; Wang, Zhihong
  • Optics Express, Vol. 24, Issue 5
  • DOI: 10.1364/OE.24.004680

High transmission nanowire contact arrays with subwavelength spacing
journal, December 2015

  • Román, Etor San; Vitrey, Alan; Buencuerpo, Jerónimo
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 10, Issue 2
  • DOI: 10.1002/pssr.201510367

Large area nanoscale metal meshes for use as transparent conductive layers
journal, January 2015


Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells
journal, June 2010


Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes
journal, December 2008

  • Kang, Myung-Gyu; Kim, Myung-Su; Kim, Jinsang
  • Advanced Materials, Vol. 20, Issue 23
  • DOI: 10.1002/adma.200800750

Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes
journal, May 2007


Electrical resistivity of transparent metal nanomesh electrodes: Electrical resistivity of transparent metal nanomesh electrodes
journal, November 2012

  • Nakanishi, Tsutomu; Fujimoto, Akira; Kitagawa, Ryota
  • physica status solidi (a), Vol. 210, Issue 2
  • DOI: 10.1002/pssa.201228481

Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles
journal, January 2016

  • Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han
  • Nanoscale, Vol. 8, Issue 21
  • DOI: 10.1039/C6NR01896C

Fabrication of a transparent conducting Ni-nanomesh-embedded film using template-assisted Ni electrodeposition and hot transfer process
journal, January 2016

  • Choi, Hak-Jong; Ryu, Sang-Woo; Jun, Junho
  • RSC Advances, Vol. 6, Issue 85
  • DOI: 10.1039/C6RA14565E

Enhanced Broadband Optical Transmission Through Ultrathin Metallic Nanomesh
journal, January 2012

  • Zhu, J. F.; Zeng, B. Q.; Wu, Z.
  • Journal of Electromagnetic Waves and Applications, Vol. 26, Issue 2-3
  • DOI: 10.1163/156939312800030848

Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles
journal, February 2011

  • Nakanishi, Tsutomu; Tsutsumi, Eishi; Masunaga, Kumi
  • Applied Physics Express, Vol. 4, Issue 2
  • DOI: 10.1143/APEX.4.025201

Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics
journal, September 2016

  • Han, Bing; Peng, Qiang; Li, Ruopeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12825

Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography
journal, January 2014

  • Guo, Chuan Fei; Sun, Tianyi; Liu, Qihan
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4121

Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells
journal, January 2011

  • Chua, Julianto; Mathews, Nripan; Jennings, James R.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22944c

Current Collecting Grids for ITO-Free Solar Cells
journal, November 2011

  • Galagan, Yulia; Zimmermann, Birger; Coenen, Erica W. C.
  • Advanced Energy Materials, Vol. 2, Issue 1
  • DOI: 10.1002/aenm.201100552

High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid
journal, January 2010

  • Ghosh, D. S.; Chen, T. L.; Pruneri, V.
  • Applied Physics Letters, Vol. 96, Issue 4
  • DOI: 10.1063/1.3299259

Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device
journal, January 2016

  • Qi, Liangfei; Li, Jia; Zhu, Chaoting
  • RSC Advances, Vol. 6, Issue 16
  • DOI: 10.1039/C5RA21988D

Fully transparent organic transistors with junction-free metallic network electrodes
journal, July 2015

  • Pei, Ke; Wang, Zongrong; Ren, Xiaochen
  • Applied Physics Letters, Vol. 107, Issue 3
  • DOI: 10.1063/1.4927445

A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells
journal, January 2014

  • Rao, K. D. M.; Hunger, Christoph; Gupta, Ritu
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 29
  • DOI: 10.1039/C4CP02250E

Fabrication of submicron metallic grids with interference and phase-mask holography
journal, January 2011

  • Kim, Tae-Geun
  • Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 10, Issue 1
  • DOI: 10.1117/1.3541794

Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template
journal, January 2014


Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly
journal, July 2014

  • Park, Jae Hoon; Lee, Dong Yun; Kim, Young-Hoon
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 15
  • DOI: 10.1021/am502233y

Metallic Grid Electrode Fabricated via Flow Coating for High-Performance Flexible Piezoelectric Nanogenerators
journal, March 2015

  • Park, Jae Hoon; Lee, Dong Yun; Seung, Wanchul
  • The Journal of Physical Chemistry C, Vol. 119, Issue 14
  • DOI: 10.1021/acs.jpcc.5b00771

Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature
journal, January 2011

  • Layani, Michael; Magdassi, Shlomo
  • Journal of Materials Chemistry, Vol. 21, Issue 39
  • DOI: 10.1039/c1jm13174e

Electrode Grids for ITO Free Organic Photovoltaic Devices
journal, October 2007


Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect
journal, October 2013

  • Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing
  • Advanced Materials, Vol. 25, Issue 46
  • DOI: 10.1002/adma.201303278

Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
journal, September 2015

  • Mohl, Melinda; Dombovari, Aron; Vajtai, Robert
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13710

Two-Dimensional Micropatterns via Crystal Growth of Na 2 CO 3 for Fabrication of Transparent Electrodes
journal, September 2013

  • Lee, Dong-Eun; Go, SeungJae; Hwang, GyungSeok
  • Langmuir, Vol. 29, Issue 39
  • DOI: 10.1021/la4026798

Roll-offset printed transparent conducting electrode for organic solar cells
journal, April 2015


    Works referencing / citing this record:

    Materials for Transparent Electrodes: From Metal Oxides to Organic Alternatives
    journal, January 2018

    • Hofmann, Anna Isabel; Cloutet, Eric; Hadziioannou, Georges
    • Advanced Electronic Materials, Vol. 4, Issue 10
    • DOI: 10.1002/aelm.201700412

    Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters
    journal, March 2018

    • Marus, M.; Hubarevich, A.; Fan, W. J.
    • AIP Advances, Vol. 8, Issue 3
    • DOI: 10.1063/1.5020033