DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultralow thermal conductivity in all-inorganic halide perovskites

Abstract

Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here in this paper, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m-1 ·K-1), CsPbBr3 (0.42 ± 0.04 W·m-1·K-1), and CsSnI3 (0.38 ± 0.04 W·m-1 ·K-1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm-1), and high hole mobility (394 cm2 ·V-1 ·s-1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [4];  [3];  [4];  [4];  [5];  [2];  [6]
  1. Department of Chemistry, University of California, Berkeley, CA 94720,, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
  2. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139,
  3. Department of Chemistry, University of California, Berkeley, CA 94720,, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
  4. Department of Chemistry, University of California, Berkeley, CA 94720,
  5. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
  6. Department of Chemistry, University of California, Berkeley, CA 94720,, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,, Department of Materials Science and Engineering, University of California, Berkeley, CA 94720,, Kavli Energy NanoScience Institute, Berkeley, CA 94720
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1373422
Alternate Identifier(s):
OSTI ID: 1421807
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 114 Journal Issue: 33; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; halide perovskite; thermal conductivity; thermal transport; nanowire; thermoelectrics

Citation Formats

Lee, Woochul, Li, Huashan, Wong, Andrew B., Zhang, Dandan, Lai, Minliang, Yu, Yi, Kong, Qiao, Lin, Elbert, Urban, Jeffrey J., Grossman, Jeffrey C., and Yang, Peidong. Ultralow thermal conductivity in all-inorganic halide perovskites. United States: N. p., 2017. Web. doi:10.1073/pnas.1711744114.
Lee, Woochul, Li, Huashan, Wong, Andrew B., Zhang, Dandan, Lai, Minliang, Yu, Yi, Kong, Qiao, Lin, Elbert, Urban, Jeffrey J., Grossman, Jeffrey C., & Yang, Peidong. Ultralow thermal conductivity in all-inorganic halide perovskites. United States. https://doi.org/10.1073/pnas.1711744114
Lee, Woochul, Li, Huashan, Wong, Andrew B., Zhang, Dandan, Lai, Minliang, Yu, Yi, Kong, Qiao, Lin, Elbert, Urban, Jeffrey J., Grossman, Jeffrey C., and Yang, Peidong. Mon . "Ultralow thermal conductivity in all-inorganic halide perovskites". United States. https://doi.org/10.1073/pnas.1711744114.
@article{osti_1373422,
title = {Ultralow thermal conductivity in all-inorganic halide perovskites},
author = {Lee, Woochul and Li, Huashan and Wong, Andrew B. and Zhang, Dandan and Lai, Minliang and Yu, Yi and Kong, Qiao and Lin, Elbert and Urban, Jeffrey J. and Grossman, Jeffrey C. and Yang, Peidong},
abstractNote = {Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here in this paper, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m-1 ·K-1), CsPbBr3 (0.42 ± 0.04 W·m-1·K-1), and CsSnI3 (0.38 ± 0.04 W·m-1 ·K-1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm-1), and high hole mobility (394 cm2 ·V-1 ·s-1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.},
doi = {10.1073/pnas.1711744114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 33,
volume = 114,
place = {United States},
year = {Mon Jul 31 00:00:00 EDT 2017},
month = {Mon Jul 31 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1711744114

Citation Metrics:
Cited by: 216 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-temperature thermoelectric studies of A11Sb10 (A=Yb, Ca)
journal, April 2007

  • Brown, Shawna R.; Kauzlarich, Susan M.; Gascoin, Franck
  • Journal of Solid State Chemistry, Vol. 180, Issue 4
  • DOI: 10.1016/j.jssc.2007.02.007

ShengBTE: A solver of the Boltzmann transport equation for phonons
journal, June 2014

  • Li, Wu; Carrete, Jesús; A. Katcho, Nebil
  • Computer Physics Communications, Vol. 185, Issue 6
  • DOI: 10.1016/j.cpc.2014.02.015

Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes
journal, July 2016

  • Hong, Wei-Li; Huang, Yu-Chi; Chang, Che-Yu
  • Advanced Materials, Vol. 28, Issue 36
  • DOI: 10.1002/adma.201601024

Structure, Heat Capacity, and High-Temperature Thermal Properties of Yb 14 Mn 1− x Al x Sb 11
journal, April 2009

  • Cox, Catherine A.; Toberer, Eric S.; Levchenko, Andrey A.
  • Chemistry of Materials, Vol. 21, Issue 7
  • DOI: 10.1021/cm803252r

Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
journal, January 2007


Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors
journal, March 2001


All-solid-state dye-sensitized solar cells with high efficiency
journal, May 2012

  • Chung, In; Lee, Byunghong; He, Jiaqing
  • Nature, Vol. 485, Issue 7399, p. 486-489
  • DOI: 10.1038/nature11067

Modification of the lattice thermal conductivity in semiconductor rectangular nanowires
journal, January 2003

  • Lü, X.; Chu, J. H.; Shen, W. Z.
  • Journal of Applied Physics, Vol. 93, Issue 2
  • DOI: 10.1063/1.1531810

Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate
journal, August 2013

  • Voneshen, D. J.; Refson, K.; Borissenko, E.
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3739

Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

The Effects of the Organic–Inorganic Interactions on the Thermal Transport Properties of CH 3 NH 3 PbI 3
journal, March 2016


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Unusual Evolution of the Magnetic Interactions versus Structural Distortions in R MnO 3 Perovskites
journal, June 2006


Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb 14 Mn 1− x Al x Sb 11
journal, September 2008

  • Toberer, Eric S.; Cox, Catherine A.; Brown, Shawna R.
  • Advanced Functional Materials, Vol. 18, Issue 18
  • DOI: 10.1002/adfm.200800298

Thermal Transport in Silicon Nanowires at High Temperature up to 700 K
journal, May 2016


Thermal properties of graphene and nanostructured carbon materials
journal, August 2011

  • Balandin, Alexander A.
  • Nature Materials, Vol. 10, Issue 8, p. 569-581
  • DOI: 10.1038/nmat3064

Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires
journal, July 2015

  • Zhang, Dandan; Eaton, Samuel W.; Yu, Yi
  • Journal of the American Chemical Society, Vol. 137, Issue 29
  • DOI: 10.1021/jacs.5b05404

Avoided crossing of rattler modes in thermoelectric materials
journal, August 2008

  • Christensen, Mogens; Abrahamsen, Asger B.; Christensen, Niels B.
  • Nature Materials, Vol. 7, Issue 10
  • DOI: 10.1038/nmat2273

Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH 3 NH 3 PbI 3
journal, July 2014

  • Pisoni, Andrea; Jaćimović, Jaćim; Barišić, Osor S.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz5012109

Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors
journal, April 2015

  • Zhu, Haiming; Fu, Yongping; Meng, Fei
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4271

Dumbbell Rattling in Thermoelectric Zinc Antimony
journal, September 2007


Lower limit to the thermal conductivity of disordered crystals
journal, September 1992

  • Cahill, David G.; Watson, S. K.; Pohl, R. O.
  • Physical Review B, Vol. 46, Issue 10, p. 6131-6140
  • DOI: 10.1103/PhysRevB.46.6131

Lasing in robust cesium lead halide perovskite nanowires
journal, February 2016

  • Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 8
  • DOI: 10.1073/pnas.1600789113

Recent Developments in Bulk Thermoelectric Materials
journal, March 2006

  • Nolas, George S.; Poon, Joe; Kanatzidis, Mercouri
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.45

Bright light-emitting diodes based on organometal halide perovskite
journal, August 2014

  • Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.149

MATERIALS SCIENCE: Ordering Up the Minimum Thermal Conductivity of Solids
journal, January 2007


Oxide Materials with Low Thermal Conductivity
journal, February 2007


Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Phonon engineering through crystal chemistry
journal, January 2011

  • Toberer, Eric S.; Zevalkink, Alex; Snyder, G. Jeffrey
  • Journal of Materials Chemistry, Vol. 21, Issue 40
  • DOI: 10.1039/c1jm11754h

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells
journal, September 2016


Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties
journal, July 2013

  • Stoumpos, Constantinos C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.
  • Inorganic Chemistry, Vol. 52, Issue 15, p. 9019-9038
  • DOI: 10.1021/ic401215x

Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory
journal, June 2014

  • Takabatake, Toshiro; Suekuni, Koichiro; Nakayama, Tsuneyoshi
  • Reviews of Modern Physics, Vol. 86, Issue 2
  • DOI: 10.1103/RevModPhys.86.669

Characterization and analysis of thermoelectric transport in n -type Ba 8 Ga 16 x Ge 30 + x
journal, September 2009


Lattice thermal conductivity of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3
journal, February 2016

  • Qian, Xin; Gu, Xiaokun; Yang, Ronggui
  • Applied Physics Letters, Vol. 108, Issue 6
  • DOI: 10.1063/1.4941921

Structural Phase- and Degradation-Dependent Thermal Conductivity of CH 3 NH 3 PbI 3 Perovskite Thin Films
journal, March 2016

  • Guo, Zhi; Yoon, Seog Joon; Manser, Joseph S.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.6b00513

Better thermoelectrics through glass-like crystals
journal, November 2015

  • Beekman, Matt; Morelli, Donald T.; Nolas, George S.
  • Nature Materials, Vol. 14, Issue 12
  • DOI: 10.1038/nmat4461

Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe
journal, November 2015


High-Temperature Transport Properties of the Zintl Phases Yb 11 GaSb 9 and Yb 11 InSb 9
journal, February 2010

  • Yi, Tanghong; Cox, Catherine A.; Toberer, Eric S.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901824c

CsSnI3 : Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions
journal, May 2012

  • Chung, In; Song, Jung-Hwan; Im, Jino
  • Journal of the American Chemical Society, Vol. 134, Issue 20, p. 8579-8587
  • DOI: 10.1021/ja301539s