skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum spin Hall state in monolayer 1T '-WTe 2

Abstract

A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulk bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).

Authors:
 [1];  [2];  [3];  [3];  [3];  [2];  [4];  [4];  [5];  [3];  [6];  [2];  [7]; ORCiD logo [7];  [2];  [8];  [9];  [10];  [11];  [12] more »;  [13];  [13];  [2];  [14]; ORCiD logo [10];  [2] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Chinese Academy of Sciences (CAS), Shanghai (China). State Key Lab. of Functional Materials for Informatics, Shanghai Inst. of Microsystem and Information Technology; Shanghai Tech Univ., Shanghai (China). School of Physical Science and Technology
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials
  3. Univ. of California, Berkeley, CA (United States). Dept.of Physics
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of). Max Plank POSTECH Center for Complex Phase Materials; Pusan National Univ., Busan (Korea, Republic of). Dept. of Physics
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Shanghai Tech Univ., Shanghai (China). School of Physical Science and Technology; Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of). Pohang Accelerator Lab.
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  8. Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of). Pohang Accelerator Lab.
  9. Pusan National Univ., Busan (Korea, Republic of). Dept. of Physics
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  11. Univ. of Oxford (United Kingdom). Dept. of Physics and Clarendon Lab.
  12. Ikerbasque, Basque Foundation for Science, Bilbao (Spain); CIC nanoGUNE Research Centre, San Sebastian (Spain)
  13. Chinese Academy of Sciences (CAS), Shanghai (China). State Key Lab. of Functional Materials for Informatics, Shanghai Inst. of Microsystem and Information Technology; Shanghai Tech Univ., Shanghai (China). School of Physical Science and Technology
  14. Univ. of California, Berkeley, CA (United States). Dept.of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Kavli Energy Nano Sciences Inst.
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); National Natural Science Foundation of China (NNSFC)
OSTI Identifier:
1373205
Alternate Identifier(s):
OSTI ID: 1437962
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; FA9550-14-1-0277; MAT2014-60996-R
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 13; Journal Issue: 7; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Tang, Shujie, Zhang, Chaofan, Wong, Dillon, Pedramrazi, Zahra, Tsai, Hsin-Zon, Jia, Chunjing, Moritz, Brian, Claassen, Martin, Ryu, Hyejin, Kahn, Salman, Jiang, Juan, Yan, Hao, Hashimoto, Makoto, Lu, Donghui, Moore, Robert G., Hwang, Chan-Cuk, Hwang, Choongyu, Hussain, Zahid, Chen, Yulin, Ugeda, Miguel M., Liu, Zhi, Xie, Xiaoming, Devereaux, Thomas P., Crommie, Michael F., Mo, Sung-Kwan, and Shen, Zhi-Xun. Quantum spin Hall state in monolayer 1T'-WTe2. United States: N. p., 2017. Web. doi:10.1038/NPHYS4174.
Tang, Shujie, Zhang, Chaofan, Wong, Dillon, Pedramrazi, Zahra, Tsai, Hsin-Zon, Jia, Chunjing, Moritz, Brian, Claassen, Martin, Ryu, Hyejin, Kahn, Salman, Jiang, Juan, Yan, Hao, Hashimoto, Makoto, Lu, Donghui, Moore, Robert G., Hwang, Chan-Cuk, Hwang, Choongyu, Hussain, Zahid, Chen, Yulin, Ugeda, Miguel M., Liu, Zhi, Xie, Xiaoming, Devereaux, Thomas P., Crommie, Michael F., Mo, Sung-Kwan, & Shen, Zhi-Xun. Quantum spin Hall state in monolayer 1T'-WTe2. United States. doi:10.1038/NPHYS4174.
Tang, Shujie, Zhang, Chaofan, Wong, Dillon, Pedramrazi, Zahra, Tsai, Hsin-Zon, Jia, Chunjing, Moritz, Brian, Claassen, Martin, Ryu, Hyejin, Kahn, Salman, Jiang, Juan, Yan, Hao, Hashimoto, Makoto, Lu, Donghui, Moore, Robert G., Hwang, Chan-Cuk, Hwang, Choongyu, Hussain, Zahid, Chen, Yulin, Ugeda, Miguel M., Liu, Zhi, Xie, Xiaoming, Devereaux, Thomas P., Crommie, Michael F., Mo, Sung-Kwan, and Shen, Zhi-Xun. Mon . "Quantum spin Hall state in monolayer 1T'-WTe2". United States. doi:10.1038/NPHYS4174. https://www.osti.gov/servlets/purl/1373205.
@article{osti_1373205,
title = {Quantum spin Hall state in monolayer 1T'-WTe2},
author = {Tang, Shujie and Zhang, Chaofan and Wong, Dillon and Pedramrazi, Zahra and Tsai, Hsin-Zon and Jia, Chunjing and Moritz, Brian and Claassen, Martin and Ryu, Hyejin and Kahn, Salman and Jiang, Juan and Yan, Hao and Hashimoto, Makoto and Lu, Donghui and Moore, Robert G. and Hwang, Chan-Cuk and Hwang, Choongyu and Hussain, Zahid and Chen, Yulin and Ugeda, Miguel M. and Liu, Zhi and Xie, Xiaoming and Devereaux, Thomas P. and Crommie, Michael F. and Mo, Sung-Kwan and Shen, Zhi-Xun},
abstractNote = {A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T'-WTe2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulk bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T'-WTe2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).},
doi = {10.1038/NPHYS4174},
journal = {Nature Physics},
number = 7,
volume = 13,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Topological phase transition in 1T’-WTe2. (a) Crystal structure of 1T’-WTe2. The doubled period due to the spontaneous lattice distortion from 1T phase is indicated by the red rectangle. (b) Schematic diagram to show the bulk band evolution from a topologically trivial phase, to a non-trivial phase, and thenmore » to a bulk band opening due to SOC. Calculated band structures for WTe2 to show the evolution from (c) 1T-WTe2 along ΓY direction, (d) 1T’-WTe2 without SOC, and (e) 1T’-WTe2 with SOC. Red and blue dotted bands highlight the two bands involved in band inversion, which mainly contain the 5d$_z{^2}$ and 5dxz orbital contents, respectively. + and - signs denote the parity of the Bloch states at the Γ point.« less

Save / Share:

Works referenced in this record:

One-Dimensional Edge States with Giant Spin Splitting in a Bismuth Thin Film
journal, February 2015


Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film
journal, July 2016

  • Wang, Z. F.; Zhang, Huimin; Liu, Defa
  • Nature Materials, Vol. 15, Issue 9
  • DOI: 10.1038/nmat4686

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2
journal, December 2013


Topological insulators with inversion symmetry
journal, July 2007


Quantum Spin Hall Insulator State in HgTe Quantum Wells
journal, November 2007


Quantum Spin Hall Effect in Graphene
journal, November 2005


Colloquium: Topological insulators
journal, November 2010


Bandgap opening in few-layered monoclinic MoTe2
journal, May 2015

  • Keum, Dong Hoon; Cho, Suyeon; Kim, Jung Ho
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3314

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
journal, December 2006

  • Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C.
  • Science, Vol. 314, Issue 5806, p. 1757-1761
  • DOI: 10.1126/science.1133734

Quantum Spin Hall Effect in Inverted Type-II Semiconductors
journal, June 2008


Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates
journal, January 2013


Imaging currents in HgTe quantum wells in the quantum spin Hall regime
journal, June 2013

  • Nowack, Katja C.; Spanton, Eric M.; Baenninger, Matthias
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3682

On the Quantum Spin Hall Gap of Monolayer 1T′-WTe 2
journal, April 2016


Large-Gap Quantum Spin Hall Insulators in Tin Films
journal, September 2013


Bulk-boundary correspondence of topological insulators from their respective Green’s functions
journal, September 2011


Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
journal, November 2014


Stable Nontrivial Z 2 Topology in Ultrathin Bi (111) Films: A First-Principles Study
journal, September 2011


Evidence for Helical Edge Modes in Inverted InAs / GaSb Quantum Wells
journal, September 2011


Characterization of collective ground states in single-layer NbSe2
journal, November 2015

  • Ugeda, Miguel M.; Bradley, Aaron J.; Zhang, Yi
  • Nature Physics, Vol. 12, Issue 1
  • DOI: 10.1038/nphys3527

Topological Dangling Bonds with Large Spin Splitting and Enhanced Spin Polarization on the Surfaces of Bi 2 Se 3
journal, April 2013

  • Lin, Hsin; Das, Tanmoy; Okada, Yoshinori
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl304099x

One-dimensional topological edge states of bismuth bilayers
journal, August 2014

  • Drozdov, Ilya K.; Alexandradinata, A.; Jeon, Sangjun
  • Nature Physics, Vol. 10, Issue 9
  • DOI: 10.1038/nphys3048

Large-gap quantum spin Hall states in decorated stanene grown on a substrate
journal, August 2015


Edge transport in the trivial phase of InAs/GaSb
journal, July 2016


Epitaxial growth of two-dimensional stanene
journal, August 2015

  • Zhu, Feng-feng; Chen, Wei-jiong; Xu, Yong
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4384

STM/AFM investigations of β-MoTe2, α-MoTe2 and WTe2
journal, May 1996


Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe 2
journal, October 2015


Subnanometre-wide electron channels protected by topology
journal, March 2015

  • Pauly, Christian; Rasche, Bertold; Koepernik, Klaus
  • Nature Physics, Vol. 11, Issue 4
  • DOI: 10.1038/nphys3264

Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene
journal, July 2008

  • Zhang, Yuanbo; Brar, Victor W.; Wang, Feng
  • Nature Physics, Vol. 4, Issue 8
  • DOI: 10.1038/nphys1022

Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
journal, May 2015

  • Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8252

Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
journal, February 2016

  • Das, Pranab Kumar; Di Sante, D.; Vobornik, I.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10847

    Works referencing / citing this record:

    Observation of superconductivity in pressurized 2M WSe 2 crystals
    journal, January 2019

    • Fang, Yuqiang; Dong, Qing; Pan, Jie
    • Journal of Materials Chemistry C, Vol. 7, Issue 28
    • DOI: 10.1039/c9tc02417d

    Influence of lattice termination on the edge states of the quantum spin Hall insulator monolayer 1 T WTe 2
    journal, May 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.