DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1–xFexO3: triggering the anionic redox reaction

Abstract

Lithium rich layered materials are an interesting class of materials which exploit both anionic and cationic redox reactions to store energy upwards of 250 mA h g–1. This paper aims to understand the nature of the redox reactions taking place in these compounds. Li2RuO3 was used as the base compound, which is then compared with compounds generated by partially substituting Ru with Ti and Fe respectively. Electrochemical tests indicate that Fe substitution in the sample leads to an improvement in capacity, cycle life and reduction of potential decay. To elucidate the reason for this improvement in operando diffraction experiments were carried out, highlighting the formation of a secondary de-lithiated phase. The distortion of the pristine structure eventually induces frontier orbital reorganization leading to the oxygen redox reaction resulting in extra capacity. Local changes at Fe and Ru ions are recorded using in operando X-ray absorption spectroscopy (XAS). It was noted that while Ru undergoes a reversible redox reaction, Fe undergoes a significant irreversible change in its coordination environment during cycling. In conclusion, the changes in the coordination environment of oxygen and formation of O2n– type species were probed in situ using soft X-rays.

Authors:
ORCiD logo [1];  [2];  [3];  [3]; ORCiD logo [1];  [4];  [5]; ORCiD logo [5];  [6]
  1. Nanyang Technological Univ. (Singapore)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. TUM CREATE (Singapore)
  4. Nanyang Technological Univ. (Singapore); Univ. College London, London (United Kingdom); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Nanyang Technological Univ. (Singapore); TUM CREATE (Singapore)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1373203
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 27; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Satish, Rohit, Lim, Kipil, Bucher, Nicolas, Hartung, Steffen, Aravindan, Vanchiappan, Franklin, Joseph, Lee, Jun -Sik, Toney, Michael F., and Madhavi, Srinivasan. Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1–xFexO3: triggering the anionic redox reaction. United States: N. p., 2017. Web. doi:10.1039/c7ta04194b.
Satish, Rohit, Lim, Kipil, Bucher, Nicolas, Hartung, Steffen, Aravindan, Vanchiappan, Franklin, Joseph, Lee, Jun -Sik, Toney, Michael F., & Madhavi, Srinivasan. Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1–xFexO3: triggering the anionic redox reaction. United States. https://doi.org/10.1039/c7ta04194b
Satish, Rohit, Lim, Kipil, Bucher, Nicolas, Hartung, Steffen, Aravindan, Vanchiappan, Franklin, Joseph, Lee, Jun -Sik, Toney, Michael F., and Madhavi, Srinivasan. Fri . "Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1–xFexO3: triggering the anionic redox reaction". United States. https://doi.org/10.1039/c7ta04194b. https://www.osti.gov/servlets/purl/1373203.
@article{osti_1373203,
title = {Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1–xFexO3: triggering the anionic redox reaction},
author = {Satish, Rohit and Lim, Kipil and Bucher, Nicolas and Hartung, Steffen and Aravindan, Vanchiappan and Franklin, Joseph and Lee, Jun -Sik and Toney, Michael F. and Madhavi, Srinivasan},
abstractNote = {Lithium rich layered materials are an interesting class of materials which exploit both anionic and cationic redox reactions to store energy upwards of 250 mA h g–1. This paper aims to understand the nature of the redox reactions taking place in these compounds. Li2RuO3 was used as the base compound, which is then compared with compounds generated by partially substituting Ru with Ti and Fe respectively. Electrochemical tests indicate that Fe substitution in the sample leads to an improvement in capacity, cycle life and reduction of potential decay. To elucidate the reason for this improvement in operando diffraction experiments were carried out, highlighting the formation of a secondary de-lithiated phase. The distortion of the pristine structure eventually induces frontier orbital reorganization leading to the oxygen redox reaction resulting in extra capacity. Local changes at Fe and Ru ions are recorded using in operando X-ray absorption spectroscopy (XAS). It was noted that while Ru undergoes a reversible redox reaction, Fe undergoes a significant irreversible change in its coordination environment during cycling. In conclusion, the changes in the coordination environment of oxygen and formation of O2n– type species were probed in situ using soft X-rays.},
doi = {10.1039/c7ta04194b},
journal = {Journal of Materials Chemistry. A},
number = 27,
volume = 5,
place = {United States},
year = {Fri Jun 23 00:00:00 EDT 2017},
month = {Fri Jun 23 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries
journal, January 2015

  • Hong, Jihyun; Gwon, Hyeokjo; Jung, Sung-Kyun
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0071514jes

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Li4NiTeO6 as a positive electrode for Li-ion batteries
journal, January 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemical Communications, Vol. 49, Issue 97
  • DOI: 10.1039/c3cc46842a

Effect of iron on delithiation in LixCo 1−y Fe y O 2 . Part 2:in-situ XANES and EXAFS upon electrochemical cycling
journal, January 2004

  • Holzapfel, Michael; Proux, Olivier; Strobel, Pierre
  • J. Mater. Chem., Vol. 14, Issue 1
  • DOI: 10.1039/B307672E

Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries
journal, September 2011


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Influence of Ti 4+ on the Electrochemical Performance of Li-Rich Layered Oxides - High Power and Long Cycle Life of Li 2 Ru 1– x Ti x O 3 Cathodes
journal, March 2015

  • Kalathil, Abdul Kareem; Arunkumar, Paulraj; Kim, Da Hye
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 13
  • DOI: 10.1021/am507951x

Structural and electrochemical analysis of layered compounds from Li2MnO3
journal, September 1999


Observation of an electric quadrupole transition in the X-ray absorption spectrum of a Cu(II) complex
journal, May 1982


Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review
journal, July 2009


Die Kristallstruktur von Li2ZrO3 und Li2HfO3
journal, December 1969

  • Dittrich, G.; Hoppe, R.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 371, Issue 5-6
  • DOI: 10.1002/zaac.19693710513

Synthesis and electrochemical characteristics of spinel phase LiMn2O4-based cathode materials for lithium polymer batteries
journal, January 1998

  • Sun, Yang-Kook; Jin, Sung-Ho
  • Journal of Materials Chemistry, Vol. 8, Issue 11
  • DOI: 10.1039/a804483j

Oxidation state and coordination of Fe in minerals: An Fe K- XANES spectroscopic study
journal, May 2001

  • Wilke, Max; Farges, François; Petit, Pierre-Emmanuel
  • American Mineralogist, Vol. 86, Issue 5-6
  • DOI: 10.2138/am-2001-5-612

Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries
journal, January 2017

  • Xie, Y.; Saubanère, M.; Doublet, M. -L.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02328B

Better than crystalline: amorphous vanadium oxide for sodium-ion batteries
journal, January 2014

  • Uchaker, E.; Zheng, Y. Z.; Li, S.
  • J. Mater. Chem. A, Vol. 2, Issue 43
  • DOI: 10.1039/C4TA03788J

Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

Structure and bonding in lithium ruthenate, Li2RuO3
journal, June 1988


Electrochemical Reactivity and Design of NiP 2 Negative Electrodes for Secondary Li-Ion Batteries
journal, December 2005

  • Gillot, F.; Boyanov, S.; Dupont, L.
  • Chemistry of Materials, Vol. 17, Issue 25
  • DOI: 10.1021/cm051574b

Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M=Mn, Ni, Co) for lithium batteries
journal, September 2006

  • Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.
  • Electrochemistry Communications, Vol. 8, Issue 9, p. 1531-1538
  • DOI: 10.1016/j.elecom.2006.06.030

The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
journal, January 2016

  • Saubanère, M.; McCalla, E.; Tarascon, J. -M.
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03048J

Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li 4 FeSbO 6
journal, April 2015

  • McCalla, Eric; Sougrati, Moulay Tahar; Rousse, Gwenaelle
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/jacs.5b01424

Ab initio studies of the x-ray absorption edge in copper complexes. I. Atomic Cu 2 + and Cu(ii) Cl 2
journal, September 1980


Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction
journal, May 2013


Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material
journal, February 2015

  • Zheng, Jianming; Xu, Pinghong; Gu, Meng
  • Chemistry of Materials, Vol. 27, Issue 4
  • DOI: 10.1021/cm5045978

In Situ Structural and Electrochemical Study of Ni1−xCoxO2 Metastable Oxides Prepared by Soft Chemistry
journal, October 1999

  • Tarascon, J. M.; Vaughan, G.; Chabre, Y.
  • Journal of Solid State Chemistry, Vol. 147, Issue 1
  • DOI: 10.1006/jssc.1999.8465

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

X-ray Absorption Edge Spectroscopy and Computational Studies on LCuO 2 Species:  Superoxide−Cu II versus Peroxide−Cu III Bonding
journal, June 2006

  • Sarangi, Ritimukta; Aboelella, Nermeen; Fujisawa, Kiyoshi
  • Journal of the American Chemical Society, Vol. 128, Issue 25
  • DOI: 10.1021/ja0615223

Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes
journal, March 2011

  • Deng, Z. Q.; Manthiram, A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200375d

Crystal growth and structure refinement of monoclinic Li2TiO3
journal, January 2009


Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling
journal, July 2014

  • Yang, Feifei; Liu, Yijin; Martha, Surendra K.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl502090z

Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries
journal, January 1995

  • Thackeray, M. M.
  • Journal of The Electrochemical Society, Vol. 142, Issue 8
  • DOI: 10.1149/1.2050053

Direct In situ Observation of Li 2 O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤0.5)
journal, January 2014

  • Hy, Sunny; Felix, Felix; Rick, John
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410137s

Effect of Structure on the Fe[sup 3+]∕Fe[sup 2+] Redox Couple in Iron Phosphates
journal, January 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 5
  • DOI: 10.1149/1.1837649

Feasibility of Using Li 2 MoO 3 in Constructing Li-Rich High Energy Density Cathode Materials
journal, May 2014

  • Ma, Jun; Zhou, Yong-Ning; Gao, Yurui
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm501025r

Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


Oxygen 1 s x-ray-absorption edges of transition-metal oxides
journal, September 1989


New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe 3+ /Fe 4+ Redox in α-NaFeO 2
journal, September 2015


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Observations and interpretation of x-ray absorption edges in iron compounds and proteins
journal, May 1976

  • Shulman, G. R.; Yafet, Y.; Eisenberger, P.
  • Proceedings of the National Academy of Sciences, Vol. 73, Issue 5
  • DOI: 10.1073/pnas.73.5.1384

Abuse Testing of Lithium-Ion Batteries: Characterization of the Overcharge Reaction of LiCoO[sub 2]/Graphite Cells
journal, January 2001

  • Leising, Randolph A.; Palazzo, Marcus J.; Takeuchi, Esther Sans
  • Journal of The Electrochemical Society, Vol. 148, Issue 8
  • DOI: 10.1149/1.1379740

Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system
journal, August 1994


Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials
journal, January 2015

  • McCalla, Eric; Prakash, Annigere S.; Berg, Erik
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0991507jes

Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
journal, April 2004


Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges
journal, January 2015

  • Rozier, Patrick; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0111514jes

Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3
journal, February 2003

  • Kobayashi, Hironori; Tabuchi, Mitsuharu; Shikano, Masahiro
  • Journal of Materials Chemistry, Vol. 13, Issue 4
  • DOI: 10.1039/b207282c

Review—High-Capacity Li[Ni 1- x Co x /2 Mn x /2 ]O 2 ( x = 0.1, 0.05, 0) Cathodes for Next-Generation Li-Ion Battery
journal, January 2015

  • Yoon, Chong S.; Choi, Moon Ho; Lim, Byung-Beom
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0101514jes

A 4 V Lithium Manganese Oxide Cathode for Rocking-Chair Lithium-Ion Cells
journal, January 1994

  • Huang, Haitao
  • Journal of The Electrochemical Society, Vol. 141, Issue 9
  • DOI: 10.1149/1.2055168

Rechargeable Lithium Battery Cathodes. Nonaqueous Synthesis, Characterization, and Electrochemical Properties of LiCoO 2
journal, August 1998

  • Boyle, Timothy J.; Ingersoll, David; Alam, Todd M.
  • Chemistry of Materials, Vol. 10, Issue 8
  • DOI: 10.1021/cm9802088

An application of lithium cobalt nickel manganese oxide to high-power and high-energy density lithium-ion batteries
journal, December 2007


Recent developments in cathode materials for lithium ion batteries
journal, February 2010


Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide
journal, August 2008


The Spinel Phase of LiMn[sub 2]O[sub 4] as a Cathode in Secondary Lithium Cells
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085330

Nanostructured Nb 2 O 5 Polymorphs by Electrospinning for Rechargeable Lithium Batteries
journal, November 2009

  • Viet, A. Le; Reddy, M. V.; Jose, R.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 1
  • DOI: 10.1021/jp9088589

A general purpose sub-keV X-ray facility at the Stanford Synchrotron Radiation Laboratory
journal, May 1990

  • Tirsell, K. Glenn; Karpenko, Victor P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 291, Issue 1-2
  • DOI: 10.1016/0168-9002(90)90113-K

A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes
journal, July 1997

  • Westre, Tami E.; Kennepohl, Pierre; DeWitt, Jane G.
  • Journal of the American Chemical Society, Vol. 119, Issue 27
  • DOI: 10.1021/ja964352a

Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi[sub 1∕3]Mn[sub 1∕3]Co[sub 1∕3]O[sub 2] Cathodes
journal, January 2005

  • Choi, J.; Manthiram, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 9
  • DOI: 10.1149/1.1954927

Lithium batteries: Status, prospects and future
journal, May 2010


Core Level Spectroscopy of Solids
book, January 2008


Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
journal, April 2016

  • Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11397

Anion–Cation Redox Competition and the Formation of New Compounds in Highly Covalent Systems
journal, September 1996


The Appearance of "Forbidden Lines" in Spectra
journal, September 1930


Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution
journal, August 2011

  • Jarvis, Karalee A.; Deng, Zengqiang; Allard, Lawrence F.
  • Chemistry of Materials, Vol. 23, Issue 16
  • DOI: 10.1021/cm200831c

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Structural chemistry of layered materials and their intercalates
journal, January 1980


Microstructural parameters from X-ray diffraction peak broadening
journal, October 2004


High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries
journal, November 2007


Note: Electrochemical cell for in operando X-ray diffraction measurements on a conventional X-ray diffractometer
journal, August 2015

  • Hartung, Steffen; Bucher, Nicolas; Bucher, Ramona
  • Review of Scientific Instruments, Vol. 86, Issue 8
  • DOI: 10.1063/1.4926465

Works referencing / citing this record:

A Cobalt‐Free Li(Li 0.16 Ni 0.19 Fe 0.18 Mn 0.46 )O 2 Cathode for Lithium‐Ion Batteries with Anionic Redox Reactions
journal, February 2019


Trace molybdenum doped Li 2 RuO 3 as a cathode material with enhanced performance for lithium ion batteries
journal, January 2019

  • Wang, Jiali; Zhao, Yu; Zhang, Xiaoqiang
  • Sustainable Energy & Fuels, Vol. 3, Issue 10
  • DOI: 10.1039/c9se00370c